Course Change Proposal

Form A

<table>
<thead>
<tr>
<th>Academic Group (College):</th>
<th>Academic Organization (Department): EEE</th>
<th>Date: 09/18/2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Course Proposal:</th>
<th>Department Chair: Dr. Suresh Vadhva</th>
<th>Submitted by: Dr. Suresh Vadhva</th>
</tr>
</thead>
<tbody>
<tr>
<td>New __ Change X__ Deletion __</td>
<td>For Catalog Copy: Yes X__ No __</td>
<td>Semester Effective: Fall __ Spring X__, 20_07</td>
</tr>
</tbody>
</table>

This course replaces experimental course Subject Area (prefix) and Catalog Number (course number): EEE 296K

This Catalog Number (course number) is being replaced:

<table>
<thead>
<tr>
<th>Change from:</th>
<th>Change to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Area (prefix) & Catalog No. (course no.): EEE 296K</td>
<td>Subject Area (prefix) & Catalog No. (course no.): EEE 239</td>
</tr>
<tr>
<td>Title: Advanced VLSI Design</td>
<td>Title: Advanced VLSI Design-For-Test II</td>
</tr>
<tr>
<td>Units: 3</td>
<td>Units: 3</td>
</tr>
</tbody>
</table>

JUSTIFICATION:

To build a greater knowledge depth among students of CMOS logic and VLSI fabrication, assembly and test operations. These are items that would make our students more competitive in the electronics industry.

NEW COURSE DESCRIPTION: (Not to exceed 80 words, and language should conform to catalog copy. See http://www.csus.edu/aca/univmanual/crspsl.htm - Guidelines for Catalog Course Description)

Advanced topics in VLSI testing and Design-For-Test applications. Memory-specific test methodology and special features of memory designs employed in high volume manufacturing for improved testability, yield, and reliability. VLSI failure modes, their detection and prevention. Application of trim, redundancy, wear-leveling and error correction.

Note:

Prerequisite: EEE 238

Corequisite:

CAN (California Articulation Number):

<table>
<thead>
<tr>
<th>Graded: Letter X__ Credit/No Credit__</th>
<th>Instructor Approval Required? Yes__ No X__</th>
</tr>
</thead>
</table>

Course Classification (e.g., lecture, lab, seminar, discussion): Title for SIS+/CMS (not more than 30 characters)

C5 Lecture

Adv VLSI Design-For-Test II

Cross Listed? Yes __ No X__

If yes, do they meet together and fulfill the same requirement, and what is the other course?

How Many Times Can This Course be Taken for Credit? ___Once___

Can the course be taken for Credit more than once during the same term? Yes __ No X__
FOR NEW COURSE PROPOSALS OR SUBSTANTIVE CHANGES ONLY:

Description of the Expected Learning Outcomes: Describe outcomes using the following format: "Students will be able to: 1), 2), etc." See the example at http://www.csus.edu/acaaf/example.htm

Students will become familiar with the advanced issues involved with taking a finished integrated circuit design and developing it into a validated, mass production-worthy product. Students will learn the problems encountered in the development of integrated circuits and the methods used to solve them.

Attach a list of the required/recommended course readings and activities [Note: it is understood that these are updated and modified as needed by the instructor(s).] This attachment should be forwarded only to your Dean's office, not Academic Affairs.

Assessment Strategies: A description of the assessment strategies (e.g., portfolios, examinations, performances, pre-and post-tests, conferences with students, student papers) which will be used by the instructor to determine the extent to which students have achieved the learning outcomes noted above:

Evaluations will be based on the following:
- 2 midterm exams and 1 final exam
- Research term paper

For whom is this course being developed?
- Majors in the Dept. X
- Majors in other Depts
- Minors in the Dept
- General Education
- Other

If this course required in a degree program (major, minor, graduate degree, certificate? Yes ___ No X

Does the proposed change or addition cause a significant increase in the use of College or University resources (lab room, computer facilities, faculty, etc.)? Yes ___ No X

If yes, attach a description of resources needed and verify that resources are available.

Indicate which department or programs will be affected by the proposed course (if any). __

The Department Chair's signature below indicates that affected programs have been sent a copy of this proposal form.

Approvals: If proposed change, new course or deletion is approved, sign and date below. If not approved, forward without signing to the next reviewing authority, and attach an explanatory memorandum to the original copy.

<table>
<thead>
<tr>
<th>Signatures:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department Chair:</td>
<td>11/21/2006</td>
</tr>
<tr>
<td>College Dean or Associate Dean:</td>
<td>11/21/00</td>
</tr>
<tr>
<td>CPSP (for school personnel courses ONLY)</td>
<td></td>
</tr>
<tr>
<td>Associate Vice President</td>
<td></td>
</tr>
<tr>
<td>and Dean for Academic Programs</td>
<td></td>
</tr>
</tbody>
</table>

Distribution: Academic Affairs (original), Department Chair and College Dean. Dean's office to send original after approval to Academic Affairs, at mail zip 60616. An electronic copy must also be sent.
New Course Offering: EEE 239

CLASS SYLLABUS

Prerequisite: This class follows EEE 238

Instructor: Reed Linde, Product Engineering Manager, Flash Product Group, Intel Corporation

Required Material: Instructor supplied material and industry references. Textbook TBD.

Grading: Homework (15%), Midterm Exams (40%), Final Exam (25%), Research Paper or Project (TBD)(20%)

Course content and intent:

This course is supplemental to the topics covered in EEE 238, both in scope and in depth.

EEE 238 is a survey course, focused primarily on CMOS logic product manufacturing and development. It covers prototypical manufacturing flows for VLSI fab, assembly, and test operations as well as the key concerns related to product development and manufacturing cost, yield, and quality/reliability. Emphasis is on the common methods employed for the testing and DFT of IC logic products. This proposed follow-on course will build upon the content of EEE 238, going into greater depth on the topics of VLSI failure modes and their detection and prevention. The course will use the dominant VLSI industry memory technologies of SRAM, DRAM, and flash memory as vehicles to illustrate failure modes that impact product yield and quality/reliability, and will focus on the tools and methods used to detect, monitor, and systematically address these problems.

The focus on memory technology will also provide insight into VLSI test and DFT applications beyond what is covered in EEE 238, covering additionally memory-specific test methodology and special features of memory designs employed in high volume manufacturing for improved testability, yield, and reliability. Examples of such features include PBIST and DAT test modes, memory test patterns and methods for structural test, and the application of trims, redundancy, wear-leveling, and error correction.
Schedule

Week 1 Review course syllabus. Overview of VLSI memory technologies and applications.

Week 2 Flash memory overview – principles of operation, memory cell structure and physics, array and design architecture, and test methods/flows

Week 3 Common intrinsic and extrinsic silicon failure modes of Flash memory. Examples and theory.

Week 4 SRAM/cache memory overview – principles of operation, memory cell structure and physics, array and design architecture, and test methods/flows

Week 5 Common intrinsic and extrinsic silicon failure modes SRAM/cache memory. Examples and theory.

Midterm 1

Week 6 DRAM memory overview – principles of operation, memory cell structure and physics, array and design architecture, and test methods/flows

Week 7 Common intrinsic and extrinsic silicon failure modes of DRAM. Examples and theory.

Week 8 VLSI product validation methodologies and validation tools. Design validation and system validation methodologies. Simulation to silicon correlation. Product skew lot characterization.

Week 9 Electrical failure analysis tools and techniques. Yield models and failure classification, analytical test and margin testing, memory raster and shmoo analysis, use of logic analyzer and digital oscilloscope.

Week 10 Physical failure analysis tools and techniques. Circuit isolation (ion mill), circuit microprobing, emission microscopy, voltage contrast microscopy, stripback and staining, SEM and TEM microscopy.
Midterm 2

Week 14 Design techniques for enhancing memory technology yield and reliability. Q&R applications of ATD. Application of trims. Memory array error correction, wear-leveling, and redundancy applications.

Week 15 Economics of VLSI memory technology yield and Q&R engineering

Finals