Course Change Proposal

Form A

<table>
<thead>
<tr>
<th>Academic Group (College):</th>
<th>Academic Organization (Department):</th>
<th>Date: December 20, 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering and Computer Science</td>
<td>Computer Science</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Course Proposal:</th>
<th>Department Chair:</th>
<th>Submitted by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>New X Change ___ Deletion ___</td>
<td>Du Zhang</td>
<td>Du Zhang</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Does this course fulfill a requirement for single-subject or multiple subject credential students?</th>
<th>For Catalog Copy:</th>
<th>Semester Effective:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes ___ No X</td>
<td>Yes X No ___</td>
<td>Fall X Spring ___ 2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CCE (Extension):</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes ___ No X</td>
<td></td>
</tr>
</tbody>
</table>

This course replaces experimental course Subject Area (prefix) and Catalog Nbr (course number):

Change from:

<table>
<thead>
<tr>
<th>Subject Area (prefix) & Catalog Nbr (course no.):</th>
<th>Title:</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change to:

<table>
<thead>
<tr>
<th>Subject Area (prefix) & Catalog Nbr (course no.):</th>
<th>Title:</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSC 152</td>
<td>Cryptography</td>
<td>3</td>
</tr>
</tbody>
</table>

JUSTIFICATION:

This new course is integral to the creation of the Undergraduate Certificate Program in Information Assurance and Security (Form B in process) and will help Sac State to renew its designation by the NSA/DHS as a Center of Academic Excellence in Information Assurance Education.

NEW COURSE DESCRIPTION: (Not to exceed 80 words, and language should conform to catalog copy. See http://www.csus.edu/acaf/univmanual/crspsl.htm - Guidelines for Catalog Course Description)

Introduction to design and analysis of cryptographic systems. Symmetric cryptography: Block ciphers and secure hash functions. Asymmetric cryptography: Key exchange and public-key systems. Authentication and encryption in an adversarial model. Simple cryptanalysis. Protocol design and analysis.

Note:

Prerequisite: STAT 50, CSC 60, CSC 130
Enforced at Registration: Yes _X_ No ___

Corequisite:
Enforced at Registration: Yes ___ No _X_ ___

CAN (California Articulation Number):

Graded: Letter _X_ Credit/No Credit ___
Instructor Approval Required? Yes ___ No _X_ ___

Course Classification (e.g., lecture, lab, seminar, discussion):

CRYPTOGRAPHY

Cross Listed?
Yes ___ No _X_ ___
If yes, do they meet together and fulfill the same requirement, and what is the other course.

How Many Times Can This Course be Taken for Credit? _Once___

Can the course be taken for Credit more than once during the same term? Yes ___ No _X_ ___
FOR NEW COURSE PROPOSALS OR SUBSTANTIVE CHANGES ONLY:

Description of the Expected Learning Outcomes: Describe outcomes using the following format: "Students will be able to: 1), 2), etc." See the example at http://www.csus.edu/acaif/example.htm

Students will have a...
- Thorough understanding of:
 - Adversarial model in cryptography.
 - Properties of cryptographic primitives: block ciphers, secure hash functions, universal hash functions, public-key cryptosystems.
 - Encryption modes-of-operation.
 - Key-exchange and distribution goals, assumptions and protocols.
 - Cryptographic programming using a cryptographic toolkit.

- Basic Understanding of:
 - Confusion/diffusion techniques.
 - Use of reductions to establish security guarantees.
 - Mathematics of public-key cryptography.
 - RSA and Diffie-Hellman problems.
 - Certificates and the public-key infrastructure.
 - A major network-security protocol (e.g. SSL/TLS or IPSec).

Exposure to:
- Goals and techniques of cryptanalysis.
- Programming to avoid security vulnerabilities.

Attach a list of the required/recommended course readings and activities [Note: it is understood that these are updated and modified as needed by the instructor(s).] This attachment should be forwarded only to your Dean's office, not Academic Affairs.

Assessment Strategies: A description of the assessment strategies (e.g., portfolios, examinations, performances, pre-and post-tests, conferences with students, student papers) which will be used by the instructor to determine the extent to which students have achieved the learning outcomes noted above:

- **Laboratory projects and examinations.**

For whom is this course being developed?
- Majors in the Dept. _X_ Majors of other Depts. _X_ Minors in the Dept. _X_ General Education _X_ Other _X_

Is this course required in a degree program (major, minor, graduate degree, certificate)? Yes _X_ No _X_

If yes, identify program(s): Proposed Undergraduate Certificate Program in Information Assurance and Security.

Does the proposed change or addition cause a significant increase in the use of College or University resources (lab room, computer facilities, faculty, etc.)? Yes _X_ No _X_

If yes, attach a description of resources needed and verify that resources are available.

Indicate which department or programs will be affected by the proposed course (if any). Criminal Justice (possibly)

The Department Chair's signature below indicates that affected programs have been sent a copy of this proposal form.

Approvals: If proposed change, new course or deletion is approved, sign and date below. If not approved, forward without signing to the next reviewing authority, and attach an explanatory memorandum to the original copy.

<table>
<thead>
<tr>
<th>Signatures:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department Chair:</td>
<td>![Signature][12/21/2007]</td>
</tr>
<tr>
<td>College Dean or Associate Dean:</td>
<td>![Signature][2/22/08]</td>
</tr>
<tr>
<td>CPSP (for school personnel courses ONLY)</td>
<td></td>
</tr>
<tr>
<td>Associate Vice President and Dean for Academic Programs</td>
<td></td>
</tr>
</tbody>
</table>

Distribution: Academic Affairs (original), Department Chair and College Dean. Dean's office to send original after approval to Academic Affairs, at mail zip 6016. An electronic copy must also be sent.
 COURSE DESCRIPTION

Dept., Number CSC 152 Course Title Cryptography
Semester hours 3 Course Coordinator Ted Krovetz

Catalog Description
Introduction to design and analysis of cryptographic systems. Symmetric cryptography: Block
ciphers and secure hash functions. Asymmetric cryptography: Key exchange and public-key
systems. Authentication and encryption in an adversarial model. Simple cryptanalysis. Protocol
design and analysis. Prerequisites: STAT 50, CSC 60, CSC 130.

Viega, Messier and Chandra, Network Security with OpenSSL, O’Reilly, 2002.

References
Menezes, van Oorschot and Vanstone, Handbook of Applied Cryptography, CRC 1996
(available free at http://www.cacr.math.uwaterloo.ca/hac/).
Nigel Smart, Cryptography, An Introduction (Second Edition), self-published, 2007 (available
free at http://www.cs.bris.ac.uk/~nigel/Crypto_Book/).

Course Goals
To give students an operational understanding of basic cryptography, including:
1. The ability to safely integrate cryptographic functionality into computer programs using a
cryptographic programming toolkit; and
2. The ability to discuss cogently major cryptographic primitives, their design principles,
common uses, security goals and methods of analysis.

Prerequisites by Topic
Thorough understanding of:
• Programming in a high-level language.
• Elementary discrete probability: Random variables, expectation, conditional probability.

Basic Understanding of:
• Programming in C or C++, including the use of pointers.
• Proof methods, especially contradiction.
• Analysis of non-recursive algorithms.

Exposure to:
• Basic counting principles.
Major Topics Covered in the Course

1. Goals of cryptography; adversarial model; examples of achieving goals using a random function. (3 hours.)
2. Historical ciphers; confusion/diffusion primitives; cryptanalysis. (3 hours.)
3. Block ciphers; random permutations; modeling block ciphers as a random permutation; cryptanalysis of simple block-ciphers. (3 hours.)
4. Block cipher encryption; modes of operation; attacks on encryption schemes; reductionist cryptography. (6 hours.)
5. Hash functions, cryptographic and universal; properties; constructions. (6 hours.)
6. Message and password authentication; authenticated encryption. (3 hours.)
7. Mathematics of public-key cryptography: Groups, Euclid’s algorithm. Complexity theoretic assumptions. (3 hours.)
8. Public-key cryptography; Diffie-Hellman and RSA; encryption and signature schemes; certificates. (6 hours.)
9. Network protocols; breaking poor protocols; proving good protocols; key distribution. (3 hours.)
10. Case studies (e.g., SSH, SSL/TLS, IPSec). (3 hours.)
11. Cryptographic programming; cryptographic toolkits; secure programming. (6 hours.)

Outcomes

Thorough understanding of:
- Adversarial model in cryptography.
- Properties of cryptographic primitives: block ciphers, secure hash functions, universal hash functions, public-key cryptosystems.
- Encryption modes-of-operation.
- Key-exchange and distribution goals, assumptions and protocols.
- Cryptographic programming using a cryptographic toolkit.

Basic Understanding of:
- Confusion/diffusion techniques.
- Use of reductions to establish security guarantees.
- Mathematics of public-key cryptography.
- RSA and Diffie-Hellman problems.
- Certificates and the public-key infrastructure.
- A major network-security protocol (e.g. SSL/TLS or IPSec).

Exposure to:
- Goals and techniques of cryptanalysis.
- Programming to avoid security vulnerabilities.
Laboratory Projects
Because the course aims to build cryptographic programming ability, it features regular programming assignments. These might include:

1. Implement and verify a block-cipher or hash function starting with a formal specification.
2. Write a network client to determine if a remote "oracle" is a random or pseudo-random function.
3. Use a multi-precision integer library to implement number-theoretical algorithms.
4. Create and interpret public-key certificates.
5. Establish secure communication using a cryptography library's high-level functionality.
6. Use cryptography library to secure an already-written insecure program.

Estimated Curriculum Category Content (Semester hours)

<table>
<thead>
<tr>
<th>Area</th>
<th>Core</th>
<th>Advanced</th>
<th>Area</th>
<th>Core</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithms</td>
<td></td>
<td>1.0</td>
<td>Data Structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Design</td>
<td>1.0</td>
<td></td>
<td>Prog. Languages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp. Arch.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oral and Written Communications
Programming documentation and short essay problems in homework and exams.

Social and Ethical Issues
No significant component.

Theoretical Content
This course addresses the complexity-theoretic assumptions made by modern cryptographers, including the intractability of several problems. Also, reductions play a prominent role in several security arguments made in the class.

Problem Analysis
Analysis is a constant theme in the course. Analyzing security requirements and security properties are the primary activities of cryptography. Written homework frequently stresses such analysis.

Solution Design
Students will design solutions to problems in their programming projects. They will also design, on paper, security protocols.

Status: Approved by Curriculum Committee: 10/24/2007
Approved by Department: 12/12/2007