Course Change Proposal
Form A

Academic Group (College):
Engineering and Computer Science

Academic Organization (Department):
Electrical & Electronic Engineering

Date:
April 20, 2009

Type of Course Proposal:
- New **x**
- Change ___
- Deletion ___

Department Chair:
Suresh Vadhva

Submitted by:
Turan Gonen

Does this course fulfill a requirement for single-subject or multiple subject credential students? Yes ___ No **x**

For Catalog Copy:
Yes **x** No ___

CCE (Extension):
Yes ___ No **x**

Semester Effective:
Fall **x** Spring ___, 2009

This course replaces experimental course Subject Area (prefix) and Catalog Nbr (course number):

If changing an existing course, should new version be considered a repeat of the original version? If so, the same Course ID will be maintained. If not, a new Course ID will be assigned. Note: In PeopleSoft terminology, the Course ID is the unique system identifier, not the Catalog Nbr.

Yes ___ No **x**

Change from:

<table>
<thead>
<tr>
<th>Subject Area (prefix) & Catalog Nbr (course no.)</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change to:

<table>
<thead>
<tr>
<th>Subject Area (prefix) & Catalog Nbr (course no.)</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEE 135</td>
<td>Renewable Electrical Energy Sources and Grid Integration</td>
<td>3</td>
</tr>
</tbody>
</table>

JUSTIFICATION:
This course is an elective with an emphasis on sources of renewable electrical energy. It is particularly important for engineering designers to understand the integration of renewable energy in the electrical power grid.

NEW COURSE DESCRIPTION: (Not to exceed 80 words, and language should conform to catalog copy. See http://www.csus.edu/umanual/acad.htm - Guidelines for Catalog Course Description)

The study of existing sources of renewable electrical energy such as wind, solar, geothermal, hydro, tidal, wave power, and biomass. Emphasis on wind and solar energy sources and their integration into the electric power grid. Various energy storage methods to accommodate the intermittent nature of these resources. Economic constraints, environmental benefits and institutional regulations.

Note:

- Prerequisite: EEE 130
- Enforced at Registration: Yes **x** No ___

Corequisite:

<table>
<thead>
<tr>
<th>Graded: Letter x_ Credit/No Credit</th>
<th>Instructor Approval Required? Yes ___ No x</th>
</tr>
</thead>
</table>

Course Classification (e.g., lecture, lab, seminar, discussion):

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Title for CMS (not more than 30 characters)</th>
<th>Renewable Elec Energy Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renew___</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cross Listed?

Yes ___ No **x**

If yes, do they meet together and fulfill the same requirement, and what is the other course.

How Many Times Can This Course be Taken for Credit?

1

Can the course be taken for Credit more than once during the same term? Yes ___ No **x**

Notes:
- The Department Chair, Suresh Vadhva, has reviewed and approved the course change. Please ensure that all necessary steps are taken to implement the changes as outlined in the proposal.
- Ensure that the new course title accurately reflects the content and focus of the course.
- Coordinate with the relevant academic and administrative offices to make the necessary adjustments to the catalog and course databases.
- Monitor the implementation process to ensure that all changes are correctly reflected in the university's academic records.
FOR NEW COURSE PROPOSALS OR SUBSTANTIVE CHANGES ONLY:

Description of the Expected Learning Outcomes: Describe outcomes using the following format: “Students will be able to: 1), 2), etc.” See the example at http://www.csus.edu/aacst/example.htm

Students will learn:
1. Renewable electrical energy processes
2. Methods of storing energy
3. The design process and compliance certification of energy sources with applicable standards and regulations
4. The process of transfer of electrical energy to the power grid

*Attach a list of the required/recommended course readings and activities [Note: it is understood that these are updated and modified as needed by the instructor(s).] This attachment should be forwarded only to your Dean’s office, not Academic Affairs.

Assessment Strategies: A description of the assessment strategies (e.g., portfolios, examinations, performances, pre- and post-tests, conferences with students, student papers) which will be used by the instructor to determine the extent to which students have achieved the learning outcomes noted above:

Homework assignments
Two midterms and a final
Paper reviews

For whom is this course being developed?
Majors in the Dept __x__ Majors of other Depts ___ Minors in the Dept ___ General Education ___ Other ___

Is this course required in a degree program (major, minor, graduate degree, certificate)? Yes ___ No ___
If yes, identify program(s):

Does the proposed change or addition cause a significant increase in the use of College or University resources (lab room, computer facilities, faculty, etc.)? Yes ___ No ___
If yes, attach a description of resources needed and verify that resources are available.

Indicate which department or programs will be affected by the proposed course (if any). None

The Department Chair’s signature below indicates that affected programs have been sent a copy of this proposal form.

Approvals: If proposed change, new course or deletion is approved, sign and date below. If not approved, forward without signing to the next reviewing authority, and attach an explanatory memorandum to the original copy.

Signatures:

<table>
<thead>
<tr>
<th>Department Chair: ___________________________</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Dolan</td>
<td>5/9/09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>College Dean or Associate Dean: ___________________________</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Dolan</td>
<td>5/9/09</td>
</tr>
</tbody>
</table>

CPSP (for school personnel courses ONLY)

Associate Vice President and Dean for Academic Programs

Distribution: Academic Affairs (original), Department Chair and College Dean. Dept is ordered to send original after approval to Academic Affairs, at mail zip 6016. An electronic copy must also be sent.

9/10/2008
EEE 135 - Renewable Electrical Energy Sources and their Integration with Grid:

Course Description:
The study of existing sources of renewable electrical energy such as wind, solar, geothermal, hydro, tidal, wave power, and biomass. Emphasis will be on wind and solar energy sources and their integration into the electric power grid. Various energy storage methods will be studied to accommodate the intermittent nature of these resources. Renewable electrical energy resources will be studied given the economic constraints, environmental benefits and institutional regulations.

Topics Covered:
1) Principles of sustainable renewable energy resources. (1 week)
2) Solar electrical applications. (1 week)
3) Photovoltaic generation sources, systems, and applications. (3 weeks)
4) Wind-based electric power generation. (1 week)
5) Electric power generation from renewable energy sources by using synchronous and asynchronous generators. (2 weeks)
6) Transfer of the electrical power to the transmission/distribution systems by using converter systems. Protection and voltage/frequency control of the developed power. (3 weeks)
7) Electric storage systems and transmission issues of the produced power. (1 week)
8) Production of electric power from hydrogen, biomass and geothermal resources. (1 week)
9) Production of electric power from wave and tidal power. (1 week)
10) Economic and environmental issues involving renewable electric energy production. (1 week)

Course Objectives:
1. Learn the principles of renewable energy and development.
2. Understand energy storage methodologies.
3. Learn photovoltaic generation sources, systems, and applications.
4. Learn the principles of wind power applications for electric power production.
5. Learn hydropower, geothermal power, biomass, wave, and tidal power for the purpose of electric generation.
6. Learn solar electrical power generation principles.

Evaluation:
Homework, paper reviews, 2 midterms, and a final.

Text and References:
3) Wind and Solar Energy (2nd ed) by Mukand Patel.