B.S. BIOLOGICAL SCIENCES, ECOLOGY, EVOLUTION AND CONSERVATION

Program Name

Faculty Member(s) Responsible for Data:
Jennifer Lundmark
Juanita Barrena
Rose Leigh Vines
Brett Holland
Tom Landerholm
Christine Kirvan
Ruth Ballard
Bill Avery
Shannon Datwyler
Kelly McDonald
Jim Baxter
Ron Coleman
Jamie Kneitel
Winston Lancaster
Criterion 1: Quality of Curriculum, Instructional Personnel, Curriculum Delivery

Contemporary Curriculum

The biological sciences encompass a large set of dynamic and rapidly changing disciplines, and the undergraduate programs in Biological Sciences must be responsive to current research and discovery in order to provide students with the most relevant academic knowledge and laboratory skills. Importantly, major advances in scientific research have revealed the essential role of molecular biology in all areas of the life sciences. To address changes in the field, the Department of Biological Sciences launched a major restructuring of its programs, adding several new courses and modernizing its degree programs. The implementation of the reconstructed degree program represents six years of curricular research and planning. Complete descriptions, including side by side comparisons of the old and new programs, are at http://www.csus.edu/acaf/policies/10-11%20Lists/10-11prgmlst4.stm#NSM. In all instances, advances in scientific discovery, needs of the state and local workforce, and student interest were carefully considered in crafting curricula that will enable students to meet the demands of a rapidly changing and sophisticated STEM workforce. The BS concentration in Ecology, Evolution and Conservation is a new degree track that emerged from this process.

Curriculum Rigor

The biological sciences have inherent rigor in both the subject matter and the skills needed to learn and integrate ideas from rapidly changing fields. Understanding biological complexity (e.g., the organization and activity of biological molecules, the transmission and evolution of genomes, the organization, interaction and health of Earth’s biomes, and the application of these fields to humans and other organisms) requires:

- detailed learning and integration of ideas from multiple courses (including application of principles from the fields of chemistry, physics, and mathematics)
- the capacity to understand, generate and communicate information using complex technology
- the ability to conduct both laboratory and library-based (primary literature) research, analyze data, and draw evidence-based conclusions
- critical thinking, writing, and oral communication skills that break down complicated theories and data
- accurate use of high-level data acquisition instruments (microscopes, pipettes, spectrometers, etc.)
- problem-solving, scientific reasoning and critical thinking skills
- time management to complete various projects/assessments

Because critical thinking and analysis are so foundational to our program, faculty employ teaching and assessment techniques that require students to be facile with their acquired skills and to demonstrate knowledge in a variety of ways. Our classes employ:

- inquiry-based laboratory protocols and research experiences within classes
- teaching with current technology and instrumentation (particularly in laboratories)
- pedagogical advancements such as interrupted case studies and problem-based learning
- writing, library research, and the use of primary literature
- when possible (even in lectures of 70+), essay exams with questions that require data analysis
- assessment of student skill with regard to experimental design and data portrayal (graphs, figures)
- rigorous pre-requisite courses and minimum math/chemistry standards for entry into most courses

Faculty (and staff where appropriate) Qualifications

All full-time faculty members in the department have Ph.D. specializations aligned with their role in the department. Most also have post-doctoral experience and professional training directly related to their area of specialization within the biological sciences. With regard to the Ecology Evolution and Conservation concentration, there are seven full-time faculty members with Ph.D. training in population and organismal biology to support required courses and electives in the concentration and to provide academic and career advising related to the concentration.
Almost all part-time faculty members also have Ph.D. degrees in this specialty area (the few exceptions have Masters degrees in area). Graduate Teaching Assistants (GTAs), who teach some of the lower division labs (e.g., BIO 1 and BIO 2), are all pursuing their MA or MS degree in the Biological Sciences and have completed specialized training in scientific pedagogy through our BIO 297A/B courses, which are taught by a faculty member whose research specialty is Science Education. While they do not teach, the majority of our technical staff (57%) also have Masters degrees in their area of expertise; the others all have post-baccalaureate training. There are two staff members that support courses in the Ecology, Evolution and Conservation area: one technical staff member with a Master’s in Animal Ecology serves introductory and animal diversity courses and the second staff member with a Bachelor’s degree serves introductory and plant diversity courses.

Percent of Instruction by Full-time Faculty

It is not possible at this time to provide accurate data on either total faculty wtu’s required to support a specific undergraduate program or the proportion of full-time to part-time faculty in each program. This is because, (1) there are no major courses that are exclusive to a program (i.e., a course that is required/strongly recommended in one program can be used as a required/recommended course or an elective in at least one other degree program); and (2) several major courses also serve a service function to other majors. However, we attempt here to give a “gross sense” of the full-time to part time ratio in undergraduate major programs, knowing that there is a great margin of error in the estimates provided. These estimates, using the Fall 2011 schedule were obtained as follows:

1. Obtaining the total numbers of full-time and part-time wtu’s devoted to undergraduate courses. For Fall 2011, these numbers were 156.7 full-time and 175.3 part-time wtu’s for a total of 329 wtu’s.
2. Obtaining the number of full-time and part-time wtu’s devoted to courses that are either closed to Biology majors or have a substantial GE or service function. The courses included in this category were: BIO 1,7,9,10,15L,20,22,25,26,39,121,122,131,and 139. However, it is important to note again here that many other major courses are taken by non-majors. For Fall 2011, numbers for the listed courses were 54.9 wtu’s full-time and 122.8 wtu’s part-time for a total of 177.7 wtu’s.
3. Calculating total FTES for the courses listed in step 3, and the FTES (number and proportion) attributed to non-majors v. majors. In Fall 2011, these courses generated a total of 962.33 FTES, of which 756.07 (78.56%) were attributed to non-majors.
4. Multiplying the total full-time and part-time wtu’s in the courses listed in step 2 by the proportion of FTES generated by non-majors (i.e. 78.56%) to estimate the number of full-time and part-time wtu’s devoted to teaching non-majors. For Fall 2011, this calculation yields 43.1 full-time wtu’s and 96.47 part-time wtu’s.
5. Subtracting the values obtained in step 4 from the total number of full-time wtu’s and part-time wtu’s devoted to undergraduate instruction (obtained in step 1) to obtain an estimate of the number of full-time wtu’s and part-time wtu’s devoted to instruction of undergraduate majors in all programs. For Fall 2011, these gross estimates are 113.6 full-time wtu’s and 78.83 part-time wtu’s.

Hence, based on the methodology described above, the gross estimate of the % of instruction by full-time faculty in the undergraduate programs is 59 %.

Use of Technology, as appropriate for discipline

Technology is at the very core of the biological sciences and its use is essential to prepare students to acquire scientific data in today’s high-technology setting, and to successfully enter the growing STEM workforce. Some of the technologies incorporated in Ecology, Evolution and Conservation include:

- sampling techniques for both field and laboratory studies, including advanced statistical and graphical analysis, and mathematical modeling and analysis
- DNA-based tools that can be used to address ecological and evolutionary questions
- wireless streaming and cyberlearning technologies, such as wiki-based social learning, instant messaging, social networking and social bookmarking
Criterion 2: Clearly Developed Learning Outcomes

Clearly Articulated Program Links to Campus Baccalaureate Learning Goals

In Fall 2011, the Department of Biological Sciences unveiled a complete set of seven substantially revised undergraduate degree programs and one new concentration. The implementation of these degree tracks represents six years of curricular research, planning, and the intensive crafting of learning outcomes such that students are able to progress through a set of modern foundational courses with the option to specialize in a sub-area of the biological sciences. The B.S. concentration in Ecology, Evolution and Conservation is designed specifically to prepare students for careers in state and federal agencies, environmental consulting firms and graduate programs in Ecology, Evolution and Conservation. Using the “Backward Design” process, the undergraduate curricula were designed to meet an agreed upon set of learning outcomes for “key concepts” and “key skills”, which are introduced in the lower division course sequence (BIO 1 and BIO 2), reinforced and expanded in sophomore and junior level courses, and selectively emphasized in a student’s specific degree program. The learning outcomes for all undergraduate programs include the following, and are directly linked to the baccalaureate learning goals as described below:

1) Students will develop a base of factual and conceptual knowledge of basic and applied biological processes.
 Baccalaureate learning goals addressed: Competence in the discipline, Knowledge of human cultures and the physical and natural world, Intellectual and practical skills

2) Students will be able to generate and communicate scientific knowledge.
 Baccalaureate learning goals: Competence in the discipline, Intellectual and Practical Skills, Personal and social responsibility, Integrative learning

3) Students will develop and appreciate the importance of connections between other academic disciplines and the biological sciences and the social relevance of biology.
 Baccalaureate learning goals: Competence in the discipline, Knowledge of human cultures and the physical and natural world, Integrative learning

4) Students will be able to implement the skills needed to be life-long learners in any field of study.
 Baccalaureate learning goals: Competence in the discipline, Knowledge of human cultures and the physical and natural world, Intellectual and practical skills, Personal and social responsibility, Integrative learning

To clarify these expectations to students, the Department of Biological Sciences posts these learning outcomes on its website home page (http://www.csus.edu/bios/) . Furthermore, course learning outcomes include course-specific summaries of these four learning outcomes within syllabi.

The “key concepts” identified by the Department are organized into three concept areas with which all majors engage: Cellular and Molecular Biology, Ecology and Biodiversity, and Structure and Physiology of Living Organisms. Within each of these areas, specific learning outcomes have been identified at factual, conceptual, procedural, and metacognitive levels. Examples for Ecology and Biodiversity (the focus of much of Ecology, Evolution and Conservation): Factual - Recognizing that biological communities are composed of different trophic levels that interact to produce complex ecosystems; Conceptual – Differentiating between the fundamentally different processes that control growth and development in plants and animals; Procedural – Applying the Lotka-Volterra predator-prey model to analyze data on changes in population size within a community; Metacognitive – Use knowledge of nutrient cycling to develop and test predictions about the influence of human actions on the environment.

The “key skills” that are introduced in BIO 1 and BIO 2 are: Current field methodology, current lab methodology, the scientific method, reading and writing skills, critical thinking, collaborative skills, literature review and application of concepts in biology. All of the curricula require BIO 100 (Introduction to Scientific Analysis), a course that cannot be articulated with courses at other institutions, and must to be taken by both our native students and transfer students as one of the first upper division courses taken within the major and is meant to serve as a bridge course between the lower and upper division. The scientific skills presented in this course reinforce the basic skills introduced in the lower division as well as extending the basic skills to a level where students feel comfortable with generating hypotheses, interpreting results from other studies, and presenting data.
Section: Clearly Developed Learning Outcomes

Although programs in the Biological Sciences vary in their emphasis on field or lab methodology (this concentration employs a combination of field and lab methodology), all programs require development of proficiency in the other noted skills necessary to generate and communicate scientific knowledge, and which also have application to other fields of study and life-long learning.

Updated Plan that Clearly Identifies Program Learning Goals, Assessment Strategies, and Processes by Which Data Inform Program Curriculum Decisions

The Department has collected data on various aspects of the prior undergraduate programs that can inform our future evaluations of the new and revised programs introduced in Fall 2011. They include previous departmental assessment reports, assessment of the NSAC advising center, senior survey results, and an alumni survey. Similar strategies will be employed in assessments of the new and revised programs. In addition, for the new curricula, the Department has identified the Experimental Design Ability Test (EDAT)\(^1\), which will address each of the outcomes identified above (1-4) by examining student-driven experimental design. The EDAT, which will be administered for the first time in Spring 2012, assesses students’ knowledge of the basic and critical elements of a good experiment, and depending on the prompt used, the EDAT can be adapted to assess specific factual and conceptual knowledge important to different fields within the biological sciences (outcome 1). The EDAT will further evaluate students’ ability to generate and communicate scientific knowledge, as it requires students to design and describe their own experiment in essay format (outcome 2). The prompts for this instrument are generated to address authentic problems that have relevance to students’ lives. Students must understand the process and nature of science, but also have the ability synthesize information and make connections to other disciplines in order to evaluate real-world scenarios (outcome 3). Lastly, students must employ creativity and other higher order thinking skills, as they analyze the information provided in the prompt, evaluate the claim, and ultimately solve the problem (outcome 4).

The EDAT will be administered at several points within the curriculum: in BIO 1 (Introductory level), BIO 100 (Intermediate level), and BIO 188 (Advanced level). An evaluation of EDAT scores at these levels will allow an assessment of student learning throughout the curriculum. Further, this will give an indication of student learning at different levels in order to establish benchmark standards that will be used in informing departmental curricular decisions. In the first administration of the EDAT, the assignment will be a stand-alone assessment (i.e., not integrated into the curriculum). However, future assessment using the EDAT will be incorporated into the curriculum of courses involved so that an assessment of knowledge can be made in an appropriate context.

External Assessment and Accreditation Outcomes, where appropriate

We are currently in the process of Program Review. Our external evaluation is planned for April, 2012.

Additional Information

The catalog description for the Ecology Evolution and Conservation concentration provides a succinct statement designed to help students decide whether this concentration is compatible with their interests and future goals. Specifically, it states: The concentration in Ecology, Evolution, and Conservation is designed for students interested in wildlife management conservation biology, or pursuing graduate study in ecological and evolutionary approaches in the Biological Sciences. By choosing the Conservation Biology advising track, students get necessary training for a career working with local, state, or federal agencies as a biologist or environmental scientist. The Ecology and Evolution advising track is designed to prepare students for graduate study in the Biological Sciences.

\(^1\) Experimental Design Ability Test (EDAT)

Described in: Sirum and Humburg, Bioscene: *Journal of College Biology Teaching Volume 37(1) May 2011*
Criterion 3: Advising Program and Graduation Success

We are particularly proud of our efforts in advising students. Since 2006, we:

- implemented a new advising center to provide comprehensive attention to incoming students
- developed and implemented sophisticated online advising tools
- structured our gateway courses to be more inclusive of diverse student learning styles
- began efforts to intrusively advise students at risk of failing introductory gateway courses, recently obtaining (in cooperation with other faculty in our College) a $2 million National Science Foundation (NSF) grant (Project PASS) to support student success in introductory science.

Graduation Rate

According to the 2011 Fact Book, the 5-year graduation rate for freshmen entering in Fall, 2005 is 23% (6-yr rate = 40%). While we understand that these numbers are indicative of student flow through the University, we have data that show they are highly inaccurate with reference to the graduation rate of our “real” majors, in part because a substantial number of students declare biology without taking, or even intending to take, any actual course work in the degree (e.g. we investigated 40 “declared” biology majors taking a non-majors service course this semester; only 2 were actually biology majors, the rest looked to be taking pre-nursing course work, with no courses that could apply to the Bio degree). Biological Sciences attracts individuals interested in health professions (which represent the great majority of incoming freshmen at our orientations); thus, many students declare Biology when they really are interested in Kinesiology, pre-Nursing, or Health Science, and the flow out of the major is large. Additionally, students often declare Biology midway through their academic careers and come to us as juniors or seniors (e.g. in BIO 1, the first majors course, 26% of enrolled students were Jr/Sr Biology majors in Fall 2010); because our course work is specific and sequential, flow into the major includes many students who consequently take 7 years (or more) to graduate. The take-home message is that institutional statistics are clouded by variables we cannot control. Using SacVault, we have taken 'snapshots' of students at different levels of our program to obtain a more accurate view of the graduation rates of “real” biology majors.

Analysis using BIO 1, first introductory required course (this course has no pre-requisites): 47%* of freshmen taking this course in Fall 2006 (first offering) or Spring 2007, had graduated or were set to graduate by Spring 2011 (5 year mark); 69%* are on track to graduate by Spring 2012 (6 year mark). [*students individually tracked]

Analysis using BIO 184, a mid-level required course: Majors who began here in 2004 (similar data pool to Fact Book) took Genetics around Fall 2007/Spring 2008. Data indicate that in fact, 83% of biology majors taking Genetics during those semesters have graduated, the majority of them (83%) by Spring 2009, the 5-yr mark for the 2004 entering freshmen class. While we are aware it is difficult to separate out transfers from freshmen in this analysis, we note that the Fact Book reports only a 27% 3-yr graduation rate for transfers entering Fall 2007.

Conclusion: It is clear that for “real” biology majors (those that take even the most introductory majors course), the graduation rates are much higher than those indicated by the Fact Book, and are likely between 50-60%.

Regardless, we do note that lower graduation rates tend to be the norm in areas that have difficult lower division requirements (CSU 5-yr graduation rate in STEM disciplines = 34.7%). To that end, we have invested a great deal of faculty energy and resources into the care of our introductory students. Full-time faculty (including our Science Education expert) teach the majority of our lower division core, and these courses are structured to assist students with different learning styles and study skills become as successful as possible. Our new PASS grant (shared with faculty from Chemistry and Physics) is designed to increase student success in gateway courses throughout the College, and we have intrusive advising for all freshmen and transfers. Programs in the College that assist students traditionally at-risk, such as the Science Educational Equity program and the Louis Stokes Alliance for Minority Participation program, have their roots in our department, as our faculty have in large part developed or obtained funding for these programs.
Distribution of Advising Responsibilities Among Faculty Members

Demographic and technological changes have radically changed the way advising is done within the department. In 2006, the department had approximately 916 majors and 26 Full Time Faculty (35:1), where as now we have more than doubled to 1550 majors and 18 FTF (86:1). The total number of majors greatly exceeds the number of full-time faculty available to advise. Previous attempts at mandatory advising were ineffective due to the high student/faculty ratio, so we amended it to focus on the most at-risk students (freshmen and first-semester transfers); other students are strongly encouraged to see their advisor. Incoming students are required to see an advisor in our advising center (Natural Sciences Advising Center, NSAC); advisors there refer students to a faculty member in their area of interest. All full-time faculty share advising responsibilities, and NSAC provides all students with career advising information.

Proactive Advising Contact with Students to Assure Progress to Degree

NSAC was piloted in 2009 to provide more comprehensive advising to incoming students, and has been largely staffed by our invaluable retired faculty who maintain diligent logs about which students visit and why. Using Sign-In software and an Exit Survey designed by Biology faculty, they have compiled information on the 1300+ students that are served by NSAC every semester. Students came for a variety of reasons:

- 86% come seeking advice on course selection
- Many are interested in career advising (75%) or internship opportunities (63%) – NOTE: to address this interest, we now have our Career Center liaison, Shannon Wells, holding office hours in NSAC
- Students come in for help with departmental/university forms (53%), to find a faculty career advisor (51%), or are interested in interpreting transfer credit (44%)
- A growing number are coming for assistance with academic issues, seeking study tips (37%), looking for study groups (29%) or seeking workshops on study skills or time management (40%) NOTE: to address these concerns, an NSF grant has funded a new staff position to assist with student success in gateway science courses. This new staff member began this semester, and will focus her efforts on Early Intervention with at-risk students in our gateway courses. She is housed in NSAC, and her position is funded by the PASS grant, a joint project led by faculty in Biology, Chemistry, and Physics.

Program Roadmap to Curriculum Completion and Graduation Success

We have long published “ideal” schedules for students within the major, for both 4-year and 5-year plans. We regularly publish schedules for courses that are not regularly offered (e.g. odd springs or fall only). Faculty consult the published multi-year schedule when advising students, and we have advising templates available to all faculty and students within the department. To assist with graduation petitions, a biology-specific template is available on our departmental website.

Use of Technology to Supplement and Strengthen Program Advising Effort

The Department has created and maintains interconnected websites and online tools that have partially offset the impact of the tremendous change in student:faculty ratios, allowing us to disseminate advising information among faculty as well as direct students to information.

- NSAC – The Natural Sciences Advising Center makes use of online appointments (http://saweb.csus.edu/students/aascheduler/), and maintains a website and Facebook page (http://www.facebook.com/pages/Hot-Stuff-at-NSAC/199202573428705) with current meetings, internships, job opportunities, etc. All websites and appointment and exit survey software were developed or adapted by a Bio Sci faculty member.
- Pre-Health website (http://www.csus.edu/prehealth/): this site is intended for bio majors and other CSUS students interested in a professional health-care related degree program following graduation. The site consists of approximately 17 web pages of information (and dozens of links) which contain extensive information regarding dozens of health professions, links to on-campus pre-health advisors by major and profession, prerequisite comparison for five of the most common pre-health professional degree
Section: Advising Program and Graduation Success

programs, links to local health organizations' volunteer contact information, links to campus pre-health student organizations, dozens of links to external programs and ancillary sites, links to other campus advising sites, including: Departmental NSAC, Career Center, and detailed FAQ.

- Department of Biological Sciences website (http://www.csus.edu/bios/): this site contains approximately two dozen web pages, most of which are devoted to advising and otherwise empowering students by providing them with tools to find information and help from faculty and staff. It contains 13 pages of advising sheets, links to online syllabi, advisors by specialty, scholarships, employment, internships, seminars, faculty research, student associations (the Field Biology Group is particularly relevant to this concentration), SEE, MOSS, science educational sites, GE courses, and the BIO sections of the catalog.

- SacSend to inform all majors of upcoming advising holds, study skills workshops, etc.

Post-degree Success, Graduate Impact on Community, etc.

Our 2009 Alumni Survey (187 respondents, 75% of whom had graduated in the past 3 years) indicated that the largest subset of our graduates had found work in the health care arena (27%), with others working in clinical or research labs (20%) or for the government in some capacity (16%). 20% were in graduate or professional school; all others were employed, with only 2% working in a field unrelated to biology. Perhaps even more telling, 86% of respondents indicated that their employer considered it important that their degree be in the biological sciences.

Our graduates are very successful at gaining entry to graduate and professional programs. A recent survey of faculty (who provided information on all applicants seeking letters of recommendation between 2006-2011; all but two faculty responded) indicated the following: (data www.csus.edu/bios/temp/quartile_1290847qwel;rj.html)

- Medical school: 66 applicants, 41 matriculants = 62% success rate [National avg = 43.5%]
- Dental school: 34 applicants, 19 matriculants = 56% success rate
- Pharmacy school: 39 applicants, 25 matriculants = 64% success rate
- Nursing/Nurse Practitioner: 15 applicants, 12 matriculants = 80% success rate
- Other health care fields (e.g. MPH, vet): 20 applicants, 17 matriculants = 85% success rate
- Graduate programs in science: 114 applicants, 76 matriculants = 67% success rate
- Teaching credential programs: 11 applicants, 10 matriculants = 91% success rate

[Note: These statistics are conservative estimates. Instances where we did not know the fate of the applicant were counted as unsuccessful]

We realize that our success rates are quite high, something we attribute to intrusive, purposeful, and honest advising. If a student is not likely to meet with success when pursuing a particular career, we gently steer them towards an area where they will reach their professional goals.

Sacramento ranks 22nd among metropolitan areas with the largest employment levels in research, testing and medical laboratories, with a work force of 5,101 in 2008 (Sacramento Business Journal, 2010). The University of California at Davis Health System is centered 2 miles from campus. Its "economic impact...is close to $3.5 billion...and more than 20,000 jobs (Ryan Sharp, director of the Center for Strategic Economic Research). The rate of growth of the UCD Health System substantially greater than other segments of the regional economy. For example, total NIH funding for the School of Medicine has more than tripled in the past ten years ($200 million in 2011), according to the UCD news room.

Sacramento also serves as a major center for various state and federal agencies. The Ecology Evolution and Conservation concentration provides a pipeline to meet technical workforce needs of these agencies (e.g., CA Fish and Game, US Fish and Wildlife, National Marine Fisheries Service, US Forest Service, Department of Water Resources, National Park Service, Bureau of Land Management, CA Air Resources Board, and US Army Corps of Engineers). Our students also work in private consulting firms, enter graduate school and become researchers and teachers.
Criterion 4: Strength of Teaching Performance

Note: Faculty teaching in all programs in the Department of Biological Sciences are held to the same standards with regard to teaching performance. Therefore, responses relating to this criterion apply to all Biology programs.

Articulated Program Statements regarding Quality of Teaching

The Department of Biological Sciences is committed to ensuring the strength of its faculty's teaching performance. Examples of documents that include articulated statements regarding this commitment and selected excerpts from these documents are provided below.

1. Department RTP Policy: Current Department RTP Policy includes the following statements:

 The Department of Biological Sciences places primary emphasis on Teaching Performance and shall weight performance in this category no less than 55% in the evaluation of candidates for retention, tenure, and promotion. In addition, competent teaching performance shall be the primary and essential criterion for retention, tenure, or promotion. (note: in practice, the normal weight assigned to teaching performance under current policy is 80%, a weight that is proposed to be reduced to 60% in reviews/evaluations beyond the first couple of years in residence, though still maintaining the eminence of the category).

 The Department of Biological Sciences is strongly committed to advancing the teaching mission of the University through classroom instruction and non-classroom activities that foster the intellectual and personal development of students.

2. Department Hiring Policies: When hiring a new full-time tenure-track faculty member, evidence of potential for teaching effectiveness and commitment to teaching is the first consideration brought to bear by the faculty on the Search Committee, and is required by policy set forth in the Department’s Governance model. The job announcement is crafted in such a way as to attract teacher/scholars. A statement such as “teaching experience at the college level is required” is included and applications must include statements of both teaching and research interests. In paper screening selection of candidates for interview, ~40% of the weight is accorded specifically to evidence of potential for teaching effectiveness in assigned courses, including evidence of: breadth of coursework and/or experience in biology, potential for teaching lower division biology for majors and non-majors, potential for teaching effectiveness in area of specialization, and experience with diverse student groups. During the interview, candidates are asked to present a teaching seminar in addition to showcasing their scholarly work. As in the case of paper screening, at least 40% of the weight in making a hiring recommendation from among the candidates interviewed is accorded specifically to potential for teaching effectiveness.

 In part-time hiring, candidates are required to provide a statement of qualifications for the teaching assignment, and prior teaching performance evaluations are given substantial weight in rankings.

Ongoing, Meaningful Assessment of Teaching Performance of Faculty, Post-Tenure

Post-tenure, the importance of teaching performance (which is given significant weight in RTP, see above) is given the same weight in promotion from Associate to full Professor as in the earlier RTP cycle. The Department encourages continued excellence in Teaching Performance through a 5-year review process, governed by its Policy on “Evaluation of Tenured Faculty not subject to RTP Review.”

Part-time faculty members are evaluated on an annual basis by the Department’s Executive Committee, which is summarized in a letter to each individual. They are also invited to meet with the Committee to discuss any aspects of their evaluation, and are referred to the Center for Teaching and Learning if they are interested in working on specific aspects of their teaching.
Multiple Measures of Teaching Performance of Full-time and Part-time Faculty Members

Multiple measures include:

- **Student Evaluations:** The Department takes great care to solicit information from students regarding the quality of our teaching in an ongoing fashion. All pre-tenure full-time faculty members and all part-time faculty members (regardless of experience) are required to have all classes evaluated by students every semester. These evaluations are thoroughly reviewed in RTP considerations. Our RTP policy specifies that: while no minimum instructor performance rating is specified as a condition for retention, tenure or promotions, faculty being evaluated should be advised that an average instructor performance rating below 7.5 (on a 10 point scale) across all courses taught will necessitate explanation and substantial evidence of teaching effectiveness from other sources. Faculty members being evaluated are also advised that high instructor performance ratings in student evaluations are not in themselves sufficient to demonstrate teaching effectiveness. Faculty members who have completed the promotional cycle (Full Professors) are also required to have their classes evaluated (at least two courses per year, although most continue to have every course evaluated every semester). Part-time faculty members are required to have student evaluations for all courses taught, and these are carefully considered and heavily weighted by the Department’s Executive Committee in its annual evaluation of Part-time Faculty and by area committees in their review of applications for reappointment.

- **Additional Measures of Teaching Performance:** In all RTP Periodic Evaluations and Performance reviews, candidates must provide a) a reflective statement on teaching (“Overview of Teaching Effectiveness”), and b) Course syllabi and samples of course materials produced by the candidate for courses taught during the semester preceding the evaluation/review. In addition, after the first two years in residence, full-time faculty must provide evidence of additional contribution to the teaching mission of the Institution, which extends beyond their effectiveness in classroom teaching. Examples include: evidence of a positive impact upon the lives and achievements of students, evidence of extra assistance for student learning such as preparation of study guides, revisions of laboratory exercises, preparation of audio-visual aids, preparation of tutorial materials, conducting review sessions or open laboratories, providing adjunct courses, and working with study groups, evidence of supervision of students engaged in special activities such as graduate research, undergraduate research, service learning, internships, volunteer work, laboratory preparation, and independent study, and evidence of receiving teaching awards or honors, or other noted contributions to the curriculum. Although multiple measures of effective teaching performance are clearly delineated for full-time faculty, the Department Executive Committee is in the process of considering a request for more detailed information from part-time faculty members as part of their yearly evaluation process. This would include sample exams, class assignments, etc. All tenure-track faculty members are required to participate in reviewing and ranking part-time applications, with priority given to applicants with demonstrated teaching effectiveness. Transcripts, current CVs, a statement of interest and teaching philosophy are required of all applicants and are rigorously assessed during the hiring process.

Systematic Program Attention to Problematic Individual Teaching Performance

Full-time faculty members are addressed primarily through the RTP process, where a letter is generated in which each candidate’s strengths and possible areas of improvement are articulated. This feedback allows the candidate to see where Teaching Performance needs improvement. In addition, the Department's RTP policy requires that the Professional Development Committee (consisting of the RTP Committee Chair, Department Chair, and another senior faculty member) follow up with the candidate in a meeting at the completion of each evaluation cycle. As noted above, part-time faculty are invited to meet with the Committee to discuss any aspects of their evaluation, and are referred to the Center for Teaching and Learning if they are interested in working on specific aspects of their teaching. Perhaps, most importantly, the Department adheres to the view that problematic teaching performance can be avoided by its systematic engagement of faculty in activities and discussions with the specific intention of improving curriculum design and improving teaching performance.
Program Name: B.S. Biological Sciences, Ecology, Evolution, and Conservation Concentration

Section: Program History and Development Status

Criterion 5: Program History and Development Status

Level of program development (e.g. young, growing, mature)

The foundations of the Biological Sciences program as a whole are mature (fun fact: we retain the only CSUS faculty member on staff when the university began), but they are continually evolving as our knowledge of the natural world expands. As a department we have readily responded to these changes with alterations in our curriculum. Thus, although a foundational program that has been in place since this institution began, Biological Sciences may also be viewed as a progressive program that is continually restructuring its offerings and focus in response to the changing demands of the field and of the scientific workforce.

The current Ecology, Evolution and Conservation concentration emerged from the Department of Biological Science’s extensive curriculum analysis and restructuring undertaken over the last six years. The new program was implemented in Fall 2011, subsuming the former “Biological Conservation” concentration which was deemed too narrow because it excluded those students interested in pursuing an academic (e.g., graduate school) or other interest (e.g., teaching) in this area, but not applied biological conservation per se. As such, the current program captures a number of students who previously selected the “BS – no concentration” option, but who clearly were interested in the areas of ecology, evolution, conservation and animal behavior.

Ability of program to adapt to current demands

In 2006, a new introductory biology sequence – BIO 1 (Biodiversity, Evolution and Ecology) and BIO 2 (Cells, Molecules and Genes) - was introduced, developed to align with recent advances in the life sciences. This was followed by a reexamination of the rest of the curriculum, with the ultimate goal of creating a structure that allows students to specialize within the biological sciences to meet the demands of a rapidly changing and sophisticated STEM workforce. We introduced a new “mid-level” core consisting of Genetics – BIO 184 (expanded to four units, to include more problem-solving and application of ideas) and a new course, Introduction to Scientific Analysis - BIO 100, which focuses on intermediate skills such as graphical analysis, reading and writing scientific papers, and interpretation of tables and figures. BIO 100 is also the “equalizer” course that combines our native students and transfer students, ensuring that all who pass to the upper division are competent in these vital skills.

Removing courses from the core also allowed students to have more specialization in their area of interest. As courses were removed and/or revamped, other courses were also developed. Courses implemented since 2006 include: Histology (BIO 130), Advanced Problem Solving in Physiology (BIO 131A), Plant Anatomy and Physiology (BIO 128), Cardiovascular/Respiratory/Renal Physiology (BIO 133), Evolution and Speciation in Flowering Plants (BIO 113), Comparative Vertebrate Morphology (BIO 126), Molecular Ecology (BIO 178), Evolution (BIO 188), Medical Microbiology and Emerging Infectious Diseases (BIO 140), Advanced Problems in Immunology (Bio 149C), Cell and Molecular Biology (BIO 121), which was reintroduced as a mid-level course; Advanced Cell and Molecular Biology (BIO 187), BIO 150 (Forensic Biology) and BIO 151 (Advanced Laboratory Techniques in Forensic Biology).

In all instances, advances in scientific discovery, needs of the state and local workforce, and student interest were carefully considered when crafting the course offerings.

Future goals of program

Although cutting-edge topics and techniques have been introduced into our curriculum, the biological sciences are changing so rapidly that we anticipate further restructuring in the future; however, we feel more than adequately prepared to address these needs, as our faculty are now well-versed in the process of Backwards Design and scaffolded curriculum. As this “new” program was just introduced in Fall 2011, our immediate focus will be on assessing its success in preparing students academically and through advisement for advancement into the work force and advancement to graduate programs in Ecology, Evolution and Conservation. We have placed particular emphasis on increasing student participation in meaningful research experiences, both with our faculty and through placement in summer research experiences elsewhere (e.g., California Academy of Sciences). Such experience is critical for acceptance into graduate programs.
Criterion 6: Impact, Justification and Centrality to University Mission

Centrality to the University’s Mission:

Like all programs offered by the Department of Biological Sciences, the BS concentration in Ecology Evolution and Conservation advances the University’s mission through its disciplinary focus on preparation of the workforce needed to address scientific issues affecting the region and the state and its pedagogical emphasis on the development of intellectual and practical skill sets (e.g., inquiry and analysis), which are broadly applicable to understanding and addressing issues beyond the realm of science. In particular, this concentration is designed to prepare students for careers in many government agencies (e.g., California Department of Fish and Game), private environmental consulting companies and research in ecology, evolution and conservation biology.

Alignment with the University’s Baccalaureate Learning Goals:

The Ecology Evolution and Conservation program is closely aligned with the University’s Baccalaureate Learning Goals. Specifically

- Competence in the Discipline is met through a modern curriculum driven by a well-defined set of learning outcomes that are current, focused and flexible enough to accommodate changes in the field.
- Knowledge of Human Cultures and the Physical and Natural World: The biological sciences focus on the study of the living world, and because scientific understanding is pursued on some level by all human cultures, science is a global endeavor. At all levels of study within our department, contributions of various cultures to the study of science are highlighted and given appropriate focus.
- Intellectual and Practical Skills are developed at all levels of our “three-tier” curricular design (introductory, intermediate, advanced). By its very nature, science involves critical thinking, analysis, quantitative and technological literacy, and problem-solving (both individually and in groups). Students work with lab/activity partners in all introductory and intermediate courses, as well as most advanced classes. Expectations of student lab performance, data analysis, and experimental design scale upward as the student progresses through the curriculum.
- Personal and Social Responsibility are highlighted in all applications of science. As science progresses, especially in its applications to human health, ethical, legal, and societal questions multiply.
- Integrative Learning: As a science, biology has its foundations in the disciplines of mathematics, physics, and chemistry; as such, it is really an applied science that integrates these “basic” sciences along with many other fields that affect its application to our society.

Although students in all programs are expected to develop a base of knowledge in each of three concept areas (Cellular and Molecular Biology, Ecology and Biodiversity, and Structure and Physiology of Living Organisms), the Ecology, Evolution and Conservation concentration emphasizes the Ecology and Biodiversity area. Similarly, students in all programs are expected to develop the following intellectual and practical skills: field and lab methodology, the scientific method, reading and writing skills, critical thinking, collaborative skills, literature review and application of concepts in biology. This program is particularly strong in integrating laboratory and field methodology, utilizing extensive detailed laboratories in courses such as Mammalogy [Bio 168], while ensuring that the student experiences and appreciates the real-world context of the material (e.g., Ecology [Bio 160], Fisheries [Bio 173]). All programs require development of proficiency in the other noted skills necessary to generate and communicate scientific knowledge, and which also have application to other fields of study and life-long learning. By its very nature, ecology is intensely integrative because it combines pure science with application in a real world strongly influenced by human values and actions.

Unique Program Characteristics/Adding Distinctiveness to our Campus

Although BA/BS degree programs in Biological Sciences and/or its subfields are offered in most, if not all, four-year universities, it is likely that that there are few that were developed using “Backward Design” and employ the scaffolded learning outcomes design described above under the “Intellectual and Practical Skills” Baccalaureate Goal and explained in greater detail under question 8.
As should be expected, the closest 4-year university offering baccalaureate degrees in the biological sciences is UC Davis. All of the UCD programs, most of which are housed in their College of Biological Sciences, are designated as BS programs. UCD offers a general BS in Biological Sciences and BS degrees in specific subfields, most of which are represented in the concentrations offered at Sacramento State. Sacramento State’s programs can be distinguished for the UCD programs in two very important ways. First, Sacramento State’s programs (including concentrations) require upper division coursework in each of three designated concept areas. This greater breadth at the undergraduate level provides students a wider range of employment opportunities, as well as the ability to more readily change areas of specialization. Second, the BA/BS programs at Sacramento State have a much stronger laboratory/field component. Unlike the programs at UCD, where most labs are offered as separate and optional courses (and taught by graduate students), most labs at Sacramento State are offered in combination with the lecture component of the course (and most are taught by faculty), providing opportunity for one-one attention and engagement of active learning and the “doing of science.” And, it is the laboratory “know how” that makes our students competitive for jobs and for acceptance into graduate programs.

We cannot over-emphasize the importance of this practical experience. For example, the main Ecology course taught at UC Davis (EVE 101) does not even have a laboratory as part of the course, in contrast to our equivalent (Bio 160). So, while the UC Davis students can learn the theory, they do not get the opportunity to put that theory into practice. Our students experience the complexity and challenges of the real world, through our laboratory and field experiences. These prepare them much better to “hit the ground running” for employment in state and federal resource-based agencies, such as California Fish and Game, and US Fish and Wildlife. We are highly successful at placing our graduates. Similarly, our biodiversity courses, e.g., Ichthyology, Herpetology, Mammalogy, make extensive use of our preserved specimen collections so that students can observe, touch, feel, and in some cases dissect, actual organisms. This multimodal learning allows students with different learning styles to master the material.

The proximity of the campus to the American River provides opportunities for our students to relate the material we teach in class with their surrounding environment which is both “natural” and yet situated in the heart of a large metropolitan community. They are forced to reconcile the apparent immediate abundance of resources, such as water, with its overall scarcity in California (a “near-desert” state) which is intensely dependent on water for human, agricultural and wildlife needs.
Section: External Demand for the Program

Criterion 7: External Demand for the Program

Community Engagement

Since 2006:

- 1,044 students in our Genetics course have volunteered with organizations that serve developmentally-disabled adults (who may have the genetic abnormalities the students are studying). Project Ride (which uses horse therapy) and the Orange Grove Adult Day School are among the projects that have benefitted
- Over 50 students have participated in teaching internships in local K-12 schools
- 160 students have joined our new student-faculty volunteer club, BioCorps, in which students donate at least 100 hours of service to the community in various projects such as Special Olympics, Bone Marrow Drives, Remote Area Medical care, 4-H’s On the Wild Side, and tutoring of local K-12 students.
- Faculty members in the Ecology Evolution and Conservation areas volunteer their time and expertise to local organizations involved with environmental preservation and education, such as the Sacramento Valley Conservancy, the Middle Mountain Foundation, Yolo Natural Heritage Program Steering Committee, American River Natural History Association and Hima Mesopotamia. Ecology Evolution and Conservation faculty contribute to many extracurricular educational activities such as being advisors and judges for school science fairs, Academic Talent Search, a coach for the California Department of Fish and Game Nature Bowl (an environmental education event), Dinner with a Scientist events at UC Merced, and in Stockton, Expanding Your Horizon event for grade 6 girls, and a research project director for Earthwatch Institute. One faculty member serves as an advisor to Capital Public Radio’s Environmental-Energy News Reporter and another is on the Board of Trustees of the American Cichlid Association. Our faculty members participate in service learning projects that involve students in community service. We serve as faculty advisors to student clubs such as the Field Biology Club and the Pre-Vet Club, and provide academic advising to non-CSUS students. Among the most significant efforts in community engagement is Dr. Baxter’s California Environmental Legacy Project, an educational media project to enhance the quality of science education for public audiences. Our faculty volunteer in community service organizations such as the Girl Scouts of America, the American Red Cross, Lend a Heart Canine Assisted Therapy, Greater Sacramento Area Electric Auto Association and Solar Cookers International.

Demand for the Program’s Resources and Expertise

- Our faculty provide workshops and field experiences in support of academic programs for area high school and middle school students such as the Science Olympiad and the Academic Talent Search.
- Many faculty and staff also give several workshops annually in the Expanding Your Horizons program for young women in the community.
- Our faculty lead workshops for area science teachers to help them better teach challenging concepts like evolution. Laboratories, technical staff, and faculty in Ecology Evolution and Conservation, provide resources for faculty and student research (both from within CSUS and from other institutions), public education and public services. The following resources are under supervision of Ecology Evolution and Conservation faculty and staff: CSUS Museum of Natural History, Museum of Ectothermic Vertebrates, University Arboretum, Greenhouses, Insect Collection, Herbarium, CSUS Bioinventory, CREST (the Center for Regional Environmental Science and Technology). Further, we have an affiliation with Moss Landing Marine Lab.
Local Trends in Enrollment

Since 2006, undergraduate enrollment in the Biological Sciences major has increased 69%, from 916 to 1550. Since all of the undergraduate degree programs in Biological Sciences in their current configuration have only been in existence since Fall 2011, trend data by program are either not available or must be based on data for the most closely related program (by title or sub-discipline area). Hence such data should not be viewed as reliable predictors of future program enrollments. In the case of the Ecology Evolution and Conservation concentration, which is the successor concentration of the former Biological Conservation concentration, data from 2008 recorded 48 of 912 majors (5.26%). Data for the current Ecology Evolution and Conservation concentration show 49 of 1539 majors (3.18%). Although this is the smallest of the Biological Sciences concentrations, courses in the Ecology Evolution and Conservation area are heavily enrolled with students from other concentrations.

Demand from Employers

The U.S. Bureau of Labor Statistics (BLS) reported in the 2010-2011 edition of the *Occupational Outlook Handbook* section on the “Biological Scientist” occupational category (http://www.bls.gov/oco/ocos047.htm) that: employment of biological scientists is projected to grow 21 percent over the 2008-18 decade, much faster than the average for all occupations; people with bachelor's and master's degrees are expected to have more opportunities in nonscientist jobs related to biology, in fields like sales, marketing, publishing, and research management; and biological scientists are less likely to lose their jobs during recessions than those in other occupations, because many are employed on long-term research projects. The “biological scientist” category is only one of many occupational categories that require a BA/BS degree in Biological Sciences (e.g., “science technician”, “conservation scientist”) or require a post-baccalaureate degree, certificate or license for which the BA/BS degree in Biological Sciences provides the required undergraduate preparation. Although all of the BA/BS programs in Biological Sciences can serve as preparation for most of these occupational categories, the BS in Ecology Evolution and Conservation is specifically designed as preparation for service to land and biological resource management agencies at the level of local, state and federal government. Graduates frequently secure employment at environmental consulting firms that compete for contracts for environmental impact statements and mitigation plans. Ecology Evolution and Conservation graduates frequently go on to apply to graduate programs in these disciplines for further training to qualify for specialized agency service or academic careers. Governmental agencies which employ our graduates include, but are not limited to the U.S. Fish and Wildlife Service, Bureau of Land Management, Bureau of Reclamation, agencies in the Department of Defense and Department of the Interior, U.S. Forest Service, California Department of Fish and Game, and California Department of Water Resources.
Criterion 8: Program Size, Scope

Breadth of Coverage

Like all BA/BS programs in Biological Sciences, the BS concentration in Ecology, Evolution and Conservation includes a two semester (10 units) introductory sequence, redesigned in 2006, which provides introductory exposure to key concepts, methods, and skills, determined through a “Backwards Design” process by the Department to be the most basic essentials of training in the Biological Sciences. The scope of content of the lower division courses is reflected in their titles: BIO 1: Biodiversity, Evolution and Ecology, and BIO 2: Cells, Molecules and Genes. The lower division core includes co-requisite courses in Chemistry, Physics, and Mathematics.

At the sophomore/junior level, the curriculum includes courses that take the key concepts and skills established earlier and delve deeper into the theoretical and factual material at their core. The student learning outcomes at this level enhance skill development and reiterate the major concepts that students are exposed to in the introductory BIO 1/BIO 2 series. The common courses at this level include Introduction to Scientific Analysis (BIO 100) and Genetics (BIO 184). Core concepts requiring more in-depth study are embedded in designated courses within each program. These core concepts fall into three areas: 1) Cell and Molecular Biology; 2) Ecology and Biodiversity; and 3) Structure and Function Relationships in Living Organisms. At the senior level, students are provided advanced level instruction that includes experiential learning in the scientific method and in-depth laboratory skills. All students in the BS in Ecology, Evolution and Conservation take General Ecology (BIO 160), Quantitative Methods in Biology (BIO 167), Molecular Ecology (BIO 178), Ecological and Environmental Issues Seminar (BIO/ENVS 186B), and Evolution (BIO 188). To gain additional breadth and depth, Ecology, Evolution and Conservation students also take: 3 units from Elective List 1 (Structure and Function electives); 9 units from Elective List 2 (Ecology, Evolution, and Biodiversity electives); and additional electives selected in consultation with an advisor to total 17 upper division elective units.

Degrees and Certificates Awarded

The BS concentration in Ecology, Evolution and Conservation is a new degree designation that was redesigned in 2010 and first offered in 2011. Therefore, no degrees in this new designation have been awarded to date. Current enrollment in this concentration equals approximately 3.2% of the total number of majors in the department (Table 1). Therefore, if the proportion remained at this level and it can be assumed that the proportion of students earning BA/BS degrees would be the same as the proportion of enrollment, then 4-5 degrees would be awarded annually (0.032 x the average of 140 BA/BS degrees awarded annually in BIO SCI programs). (http://www.csus.edu/bios/temp/quartile_1290847qwel;rj.html).

Program Enrollment

As noted above, the BS concentration in Ecology, Evolution and Conservation is a new/redesigned degree program designation. It is important to emphasize that 49 students are declared as majors in the program (3.2% of the department). FTES for the Department is 1529.60 for 2011-2012. Thus, we can estimate that 3.2%, or 48.7 FTES are associated with the concentration in Ecology Evolution and Conservation.

Program Resources and Faculty Expertise

In these challenging economic times, creating a curriculum in the biological sciences that prepares students with up-to-date concepts and skills has required tremendous creativity from the Department’s faculty. In part, these challenges have been addressed through faculty grant activity and finding nonconventional or unique partnerships and opportunities to enhance our capacity (e.g., donations of supplies and equipment from industry). Although additional faculty positions are desperately needed to meet the Department’s enrollment demands, there are 3-6 tenured/tenure-track faculty members with Ph.D. training in each of the core concept fields included in all BA/BS curricula, including seven faculty members with Ph.D. training in population, organismal and/or evolutionary biology or to support required courses and electives in the Ecology, Evolution and Conservation concentration and to provide academic and career advising related to the concentration.
Criterion 9: Internal, Non-major Demand for the Program

The Biological Sciences provides courses used to meet the requirement for General Education in Areas B2 and B3, and also provides service courses for other majors focused on allied health (e.g. Kinesiology, Health Science, Nursing, RPTA) and other areas of science (e.g. Chemistry, Environmental Sciences). Faculty members in all areas of the department contribute to GE/Service courses. Full-time faculty with primary responsibility for advising and teaching required courses in the Ecology, Evolution, and Conservation concentration also teach the following GE/Service courses: BIO 1 (GE), BIO 9 (GE), BIO 15L (GE), BIO 20 (GE), BIO 22 (Service) and BIO 122 (Service) and BIO 160 (Service).

Service courses (accompanying AY FTES)

<table>
<thead>
<tr>
<th>Service Course</th>
<th>Other majors served</th>
<th>% non-majors</th>
<th>FTES total</th>
<th>FTES non-majors</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 22 (Anatomy)*</td>
<td>Chem, Nursing, Kins, Health Sci, FACS, “pre-med”</td>
<td>86%</td>
<td>96.0</td>
<td>82.40</td>
</tr>
<tr>
<td>BIO 25 (Anatomy/Physiology I)</td>
<td>Same as above</td>
<td>93%</td>
<td>101.33</td>
<td>94.67</td>
</tr>
<tr>
<td>BIO 26 (Anatomy/Physiology II)</td>
<td>Same as above</td>
<td>95%</td>
<td>66.13</td>
<td>62.67</td>
</tr>
<tr>
<td>BIO 39 (Micro -Allied Health)</td>
<td>Chem, FACS, Nursing, CHDV</td>
<td>98%</td>
<td>13.6</td>
<td>13.33</td>
</tr>
<tr>
<td>BIO 121 (Cell Physiology)**#</td>
<td>Chem, Env Stud, FACS, Nursing, Psych, Business</td>
<td>10%</td>
<td>35.40</td>
<td>3.40</td>
</tr>
<tr>
<td>BIO 122 (Advanced Anatomy)*</td>
<td>Chemistry, Kins</td>
<td>85%</td>
<td>9.07</td>
<td>7.73</td>
</tr>
<tr>
<td>BIO 131 (Systemic Physiology)**#</td>
<td>Same as for BIO 22</td>
<td>59%</td>
<td>78.13</td>
<td>45.87</td>
</tr>
<tr>
<td>BIO 139 (General Microbio)**#</td>
<td>Same as for 39</td>
<td>44%</td>
<td>68.27</td>
<td>29.87</td>
</tr>
<tr>
<td>BIO 160*</td>
<td>Envt Stud, others</td>
<td>22%</td>
<td>51.00</td>
<td>11.20</td>
</tr>
<tr>
<td>TOTAL NON-MAJOR FTES</td>
<td></td>
<td></td>
<td>351.14</td>
<td></td>
</tr>
</tbody>
</table>

*also serves as major/elective credit by Biological Sciences majors; #Req. for Biomedical; **Req. for CLS

GE courses (accompanying AY FTES)

<table>
<thead>
<tr>
<th>GE Course</th>
<th>FTES total</th>
<th>% non-majors</th>
<th>FTES non-majors</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 1** (Biodiversity, Ecology, Evolution)</td>
<td>160.33**</td>
<td>52%</td>
<td>83.00</td>
</tr>
<tr>
<td>BIO 7 (Introduction to the Science of Biology)</td>
<td>40.27</td>
<td>100%</td>
<td>40.27</td>
</tr>
<tr>
<td>BIO 9 (Our Living World)</td>
<td>24.4</td>
<td>100%</td>
<td>24.4</td>
</tr>
<tr>
<td>BIO 10 (Basic Biological Concepts)</td>
<td>121.20</td>
<td>100%</td>
<td>121.20</td>
</tr>
<tr>
<td>BIO 15L (Lab Investigations in Biology)</td>
<td>12.6</td>
<td>100%</td>
<td>12.6</td>
</tr>
<tr>
<td>BIO 20 (Biology: A Human Perspective)</td>
<td>135.60</td>
<td>100%</td>
<td>135.60</td>
</tr>
<tr>
<td>TOTAL NON-MAJOR FTES</td>
<td></td>
<td></td>
<td>417.07</td>
</tr>
</tbody>
</table>

** This course is required for all Biological Sciences majors

Research resources

The Ecology, Evolution, and Conservation concentration houses (or provides) many resources that serve other programs: the greenhouses and arboretum have been used by CSUS departments, including Art, Anthropology, Chemistry, Physics, Environmental Studies, Communication Studies, and the Grounds Department. The Center
Section: Internal, Non-major Demand for the Program

for Interdisciplinary Molecular Biology: Education, Research and Advancement (CIMERA) facilities serves as a collaborative research hub for the cellular and molecular sciences, and involves faculty from Chemistry. It houses numerous instrumentation, including 96-well plate reader, Guava EasyCyte Flow Cytometer, Incubators and shaking incubators, DNA Analyzer/Sequencer, Gel electrophoresis equipment, Gel imager, DNA Thermal Cyclers, and Poster Printer. This instrumentation is used primarily within the College of Natural Sciences and Mathematics, but also used by faculty from Family and Consumer Sciences and Anthropology. We have also provided materials to University of California- Davis, to various community colleges, and local high schools. Other campus-based programs, including Expanding Your Horizons and Academic Talent Search, also use these facilities and support. Lastly, equipment found in individual faculty laboratories have been used by faculty in Geology, Environmental Studies, and scientists from California Department of Fish and Game.
Criterion 10: Quality of Program and Resource Utilization

The Department embraces a broad definition of scholarship, similar to that initially described by Ernest Boyer\(^2\) to include the scholarship of discovery, the scholarship of integration; the scholarship of application; and the scholarship of teaching. Each faculty member is expected to pursue a program of scholarship that is reflected by accomplishments that: 1) contribute to the development or creation of new knowledge, OR 2) contribute to the critical analysis and review of knowledge within disciplines or the creative synthesis of insights contained in different disciplines or fields of study, OR 3) apply findings generated through the above to solve real problems in professions, industry, government, the university, and/or the community, OR 4) contribute to the development of critically reflective knowledge about teaching and learning. This enables the Department to contribute to the University’s multi-faceted mission by encouraging faculty to apply their varied talents, interests, and capabilities in ways that ensure that all facets of this mission receive substantial attention.

Since 2006, faculty members in the department of Biological Sciences, including those who teach in the EEC curriculum, obtained $14.67 million in grant funding (source: Research and Contract Administration). In addition, they secured over $1 million in donated equipment and supplies (e.g. cell culture hoods, incubators, analysis kits, a mass spectrometer, etc.). Finally, some members of the CMB group participate in traditional bench/field research, supervising both undergraduate and graduate students in science and science education research.

Scholarly and Creative Activity: The seven faculty who teach in the Ecology Evolution and Conservation concentration have a track record of active, cutting-edge research involving both graduate and undergraduate students. Since 2006, they have:

- published 31 refereed articles or other types of professional manuscripts (e.g., text chapters). Of these, 11 are coauthored with students
- made 77 poster or oral presentations at professional meetings. Of these, 44 were coauthored by students
- mentored 61 undergraduate research students and 71 graduate research students

Since 2006, the Biological Sciences faculty as a whole have secured $14.67 million in external grant funding (source: Research and Contract Administration) and over $1 million in donated equipment and supplies (e.g. cell culture hoods, incubators, analysis kits, a mass spectrometer, etc.). Faculty who assume primary teaching, advising, and mentoring of students in Ecology, Evolution and Conservation have successfully secured both internal and external support for research, much of this involving students. In total, faculty in EEC have secured 30 grants for research-related projects (includes both on-campus and off-campus funding sources; Source: reporting from Biological Sciences faculty; http://www.csus.edu/bios/temp/quartile_1290847qwel;rj.html).

Service: Faculty members in EEC are highly active in the area of service to the institution and community, demonstrating strong dedication to outreach activities that benefit students and programs within the CSU System, the K-12 system and the Sacramento region as a whole. Faculty members in this concentration serve as faculty advisors to the Field Biology Group, BioCorps and pre-Vet club, and mentor undergraduate research students in the Louis Stokes Alliance for Minority Participation Program (LSAMP). Our faculty members are also dedicated to the engaging students in meaningful basic research, working with community college and high school students in Summer Research projects. Collectively, we review for peer-reviewed publications in a variety of journals (e.g., Nature Evolution, Hima Mesopotamia, Systematic Botany, Evolution, The American Journal of Botany, Evolutionary Biology, Journal of Medical Entomology, and The American Naturalist) and have edited textbooks and other published curriculum in the areas of General Biology, Evolution, Phylogenetics, and Mammalogy. We are further dedicated to the development of young scientists by routinely teaching workshops for programs such as Expanding Your Horizons, Science in the River City, Academic Talent Search, and the Earthwatch Institute.

and participate every year in the highly successful San Joaquin County Board of Education “Dinner with a Scientist” program. In addition, the EEC faculty are highly motivated to serve the community at-large in order to advance science and technology in the region and science literacy as a whole. Our EEC faculty members serve on the American River History Association, collaborate with the National Park Service and California State Parks, and have had a primary role in the California Environmental Legacy Project (http://www.calegacy.org/), which will produce an integrated package of environmental media (e.g., 2 hour PBS television documentary, online educational resources and digital and print resources to be distributed throughout California. This project is sponsored by the National Science Foundation.

Service in University Governance

Faculty members from Biological Sciences are well represented on committees at the College and University levels. In the current year, examples include: CTL Advisory Board, Academic Information Technology, CSUS Student Research Competition, Animal Care and Use, Program Review Oversight Committee, as well as every College-level committee. Faculty members from our department have also chaired or served on search committees for numerous administration positions and directorships across campus.

Working with other programs

The faculty and staff in Ecology, Evolution and Conservation have been involved with a number of collaborative programs including Academic Talent Search, Expanding Your Horizons (a program designed to encourage young women to become involved in STEM disciplines) and involved in an interdisciplinary Faculty Inquiry Group focused on reading proficiency. Several faculty are also involved in CREST, the CSUS Center for Regional Environmental and Science Technology and CIMERA (Center for Interdisciplinary Molecular biology: Education, Research and Advancement.

Effective sharing of resources

With the current budgetary climate in the state, faculty and staff must be prudent in the way in which they utilize resources both for research and teaching. The majority of faculty share office space (55% of full-time and 100% of part-time), and most research faculty members in our program share lab space as well as equipment with other faculty. The CIMERA facility supports research activities by faculty from both Biological Sciences and Chemistry and is a well-utilized facility supporting integrated research across disciplines. Faculty in teaching laboratories not only share curricular ideas and experiences but also share equipment such as microscopes, models, centrifuges, incubators and safety hoods, just to mention a few. Students from at least five different courses - Clinical Hematology, Parasitology, Developmental Biology, Histology and Neuroanatomy – use the microscope laboratory (which houses our best scopes). This sharing of resources is economical in the short term, but results in heavy use of this expensive equipment, which is damaging and potentially problematic, as service contracts are not always affordable. One of the most effective examples of collaboration is the Natural Sciences Advising Center (NSAC) in which faculty from Biological Sciences and Chemistry provide academic advising to thousands of students in NSM. Finally, the curricula at both the undergraduate and graduate levels are structured to be efficient and courses that are in that no course “stands alone.” That is, all courses may be used in more than one program. For example, for the undergraduate courses required in the Ecology, Evolution and Conservation concentration also serve as electives in the Ecology, Evolution and Biodiversity area in the general BA/BS programs and in the other concentrations. In addition, based on past enrollments, a two-year schedule of courses is generated each year, and the Department has a formal class scheduling policy, which prevents scheduling conflicts among required courses in a curriculum.
Criterion 11: Revenue and Other Resources Generated by Program

Enrollment-based budgetary support from University

For our program, we receive budgetary support from the College based on FTEF (for office and facilities expenses) and based on FTES (for instructionally-related expenses). Unfortunately, for the past several years, this allocation has fallen very short of what we need to provide appropriate materials for students in our classes (in 2006-07, our $$/FTES ratio was $69.63/FTES; by 2011-12, the ratio had fallen 29% to $49.70/FTES). To maintain the quality of our program, we have resorted to charging students laboratory and field trip fees for almost every course. While in some ways this may seem like an equitable way to share the cost, we are highly disappointed that students in our program are absorbing the budgetary shortfall.

Research grants, in-kind equipment donations, fundraising

Since 2006, faculty members in our program have obtained $14.67 million in state and federal funding (source: Research and Contract Administration). In addition, faculty members secured over $1 million in donated equipment and supplies (e.g. cell culture hoods, incubators, analysis kits, a mass spectrometer, etc.). This has enabled us to create state-of-the-art laboratory experiences for our students even as the technology rapidly advances and our budget has dwindled. We would be remiss if we did not mention the fact that without these donations, we would be unable to adequately prepare our students for an increasingly complex scientific job market. We feel extraordinarily fortunate to have acquired this equipment.

The Ecology, Evolution and Conservation (EEC) faculty are active researchers and have successfully pursued grants and equipment. Since 2006, EEC faculty have brought in $3,183,536 of external (non CSU) funding, primarily from NSF. We strongly encourage and support students to apply for external funds as well. In addition to mentoring students in research and support of research we have successfully sponsored 7 students in the NSF funded 10 week intensive Student Undergraduate Research Experience (SURE) where students are mentored by professional researchers in biological sciences.

Potential revenue (gifts, alumni support)

Former faculty members have been generous in their support of our facilities and students.

- Dr. Marda West, Professor of Biological Sciences from 1966-2001, generously endowed her entire estate (over $750,000) to the Department of Biological Sciences, to be used primarily for student scholarships. Every year, at least $21,000 in student scholarships are awarded to deserving Biological Sciences majors. Marda also donated her SUV to the department for collection trips and field trips. This past year, when it needed repairs in excess of its worth, Marda’s fund allowed us to replace it (total cost = $22,413).
- Dr. Albert Delisle, Professor of Biological Sciences from 1956-1977, provided an endowment (currently valued at $300,000) whose interest provides yearly student scholarships ($2000 each, with at least two awards/year) and support for student research within the department that is open to all faculty members.
- Dr. David Vanicek, Professor of Biological Sciences from 1967-2000, used excess research funds to found a Biological Conservation scholarship (yearly award of $500)
- Dr. Carl Ludwig, Professor of Biological Sciences from 1949-1980, established an endowment that funds a yearly $700 scholarship to support outstanding teaching assistants
- Dr. Miklos Udvardy, Professor of Biological Sciences from 1966-1984, provides a yearly $500 scholarship to graduate students to support their research projects

Other scholarships available to students have come from alumni and other local donors:
- McDougal-Robinson ($1000) (shared with Nursing, awarded every other year)
- Josephine Van Ess scholarship - $2000/year
- Von Saltza - $2000/yr (this award, shared with English, is awarded every other year)
- Sutter Hospital scholarship for Clinical Lab Scientists: 2 @ $1000/year