B.S. Biological Sciences, General Biology

Faculty Member(s) Responsible for Data:
Jennifer Lundmark
Juanita Barrena
Rose Leigh Vines
Brett Holland
Tom Landerholm
Christine Kirvan
Ruth Ballard
Bill Avery
Shannon Datwyler
Kelly McDonald
Section: Quality of Curriculum, Instructional Personnel, and Curriculum Delivery

Criterion 1: Quality of Curriculum, Instructional Personnel, Curriculum Delivery

Contemporary Curriculum

The biological sciences encompass a large set of dynamic and rapidly changing disciplines, and the BS program in General Biology must be responsive to current research and discovery in order to provide students with the most relevant academic knowledge and laboratory skills. Importantly, major advances in scientific research have revealed the essential role of molecular biology in all areas of the life sciences. To address changes in the field, the Department of Biological Sciences launched a major restructuring of its programs, adding several new courses and modernizing all of its degree programs. The implementation of the reconstructed BS in General Biology degree program in Fall 2011 is a culmination of six years of curricular research and planning. Complete descriptions, including side by side comparisons of the old and new programs, are at http://www.csus.edu/acaf/policies/10-11%20Lists/10-11prgmlst4.stm#NSM. In all instances, advances in scientific discovery, needs of the state and local workforce, and student interest were carefully considered in crafting curricula that will enable students to meet the demands of a rapidly changing and STEM workforce.

Curriculum Rigor

The biological sciences have inherent rigor in both the subject matter and the skills needed to learn and integrate ideas from rapidly changing fields. Understanding biological complexity (e.g. the organization and activity of biological molecules, the transmission and evolution of genomes, the organization, interaction and health of Earth’s biome, and the application of these fields to humans and other organisms) requires:

- detailed learning and integration of ideas from multiple courses (including application of principles from the fields of chemistry, physics, and mathematics)
- the capacity to understand, generate and communicate information using complex technology
- the ability to conduct both laboratory and library-based (primary literature) research, analyze data, and draw evidence-based conclusions
- critical thinking, writing, and oral communication skills that break down complicated theories and data
- accurate use of high-level data acquisition instruments (microscopes, pipettes, spectrometers, etc.)
- problem-solving, scientific reasoning (elucidating critical vs. irrelevant information), and case analysis
- time management to complete various projects/assessments

Because critical thinking and analysis is so foundational to our program, faculty employ teaching and assessment techniques that require students to be facile with their acquired skills and to demonstrate knowledge in a variety of ways. Our classes employ:

- inquiry-based laboratory protocols and research experiences within classes
- teaching with current technology and instrumentation (particularly in laboratories)
- pedagogical advancements such as interrupted case studies and problem-based learning
- writing, library research, the use of primary literature, and making oral presentations
- when possible (even in lectures of 70+), essay exams with questions that require data analysis
- assessment of student skill with regard to experimental design and data portrayal (graphs, figures)
- rigorous pre-requisite courses and minimum math/chemistry knowledge for most courses

Faculty (and staff where appropriate) Qualifications

All full-time faculty members in the department have Ph.D. specializations aligned with their role in the department. Most also have post-doctoral experience and professional training directly related to their area of specialization within the biological sciences. We note that on most college campuses, the norm is to have a COLLEGE of Biological Sciences, with numerous sub-departments. Distilling this amount of differential expertise into a single department of twenty faculty requires a variety of individual specializations, as well as an ability to appreciate interdisciplinary connections. The B.S. in General Biology is supported by all faculty members and capitalizes on the diversity and integration of the sub-disciplines represented. Almost all part-time faculty members also have Ph.D. degrees in the appropriate specialty areas (the few exceptions have Masters
Percent of Instruction by Full-time Faculty

It is not possible at this time to provide accurate data on either total faculty wtu’s required to support a specific undergraduate program or the proportion of full-time to part-time faculty in each program. This is because, (1) there are no major courses that are exclusive to a program (i.e., a course that is required/strongly recommended in one program can be used as a required/recommended course or an elective in at least one other degree program); and (2) several major courses also serve a service function to other majors. However, we attempt here to give a “gross sense” of the full-time to part-time ratio in undergraduate major programs, knowing that there is a great margin of error in the estimates provided. These estimates, using the Fall 2011 schedule were obtained as follows:

1. Obtaining the total numbers of full-time and part-time wtu’s devoted to undergraduate courses. For Fall 2011, these numbers were 156.7 full-time and 175.3 part-time wtu’s for a total of 329 wtu’s.
2. Obtaining the number of full-time and part-time wtu’s devoted to courses that are either closed to Biology majors or have a substantial GE or service function. The courses included in this category were: BIO 1,7,9,10,15L,20,22,25,26,39,121,122,131, and 139. However, it is important to note again here that that many other major courses are taken by non-majors. For Fall 2011, numbers for the listed courses were 54.9 wtu’s full-time and 122.8 wtu’s part-time for a total of 177.7 wtu’s.
3. Calculating total FTES for the courses listed in step 2, and the FTES (number and proportion) attributed to non-majors v. majors. In Fall 2011, these courses generated a total of 962.33 FTES, of which 756.07 (78.56%) were attributed to non-majors.
4. Multiplying the total full-time and part-time wtu’s in the courses listed in step 2 by the proportion of FTES generated by non-majors (i.e. 78.56%) to estimate the number of full-time and part-time wtu’s devoted to teaching non-majors wtu’s devoted to teaching non-majors. For Fall 2011, this calculation yields 43.1 full-time wtu’s and 96.47 part-time wtu’s.
5. Subtracting the values obtained in step 4 from the total number of full-time wtu’s and part-time wtu’s devoted to undergraduate instruction (obtained in step 1) to obtain an estimate of the number of full-time wtu’s and part-time wtu’s devoted to instruction of undergraduate majors in all programs. For Fall 2011, these gross estimates are 113.6 full-time wtu’s and 78.83 part-time wtu’s.

Hence, based on the methodology described above, the gross estimate of the % of instruction by full-time faculty in the undergraduate programs is 59%.

Use of Technology, as appropriate for discipline

Technology is at the very core of the biological sciences and its use is essential to prepare students to acquire scientific data in today’s high-technology setting, and to successfully enter the growing Science, Technology, Engineering and Mathematics (STEM) workforce. These technologies include:

- advanced molecular technologies including conventional and epifluorescent microscopy, flow cytometry, real-time PCR, and bioinformatic programs
- advanced field technologies that include GPS, remote sensing, and complex graphical analyses programs
- real-time digital data gathering and sharing systems, including human-based data acquisition
- wireless streaming and cyberlearning technologies, such as wiki-based social learning, instant messaging, social networking and social bookmarking.
Criterion 2: Clearly Developed Learning Outcomes

Clearly Articulated Program Links to Campus Baccalaureate Learning Goals

In Fall 2011, the Department of Biological Sciences unveiled a complete set of seven substantially revised undergraduate degree programs and one new concentration. The implementation of these degree tracks represents six years of curricular research, planning, and the intensive crafting of learning outcomes such that students are able to progress through a set of modern foundational courses with the option to specialize in a sub-area of the biological sciences. Using the “Backward Design” process, the undergraduate curricula were designed to meet an agreed upon set of learning outcomes for “key concepts” and “key skills”, which are introduced in the lower division course sequence (BIO 1 and BIO 2), reinforced and expanded in sophomore and junior level courses, and selectively emphasized in a student’s specific degree program. The learning outcomes for all undergraduate programs include the following, and are directly linked to the baccalaureate learning goals as described below:

1) Students will develop a base of factual and conceptual knowledge of basic and applied biological processes.
 Baccalaureate learning goals addressed: Competence in the discipline, Knowledge of human cultures and the physical and natural world, Intellectual and practical skills

2) Students will be able to generate and communicate scientific knowledge.
 Baccalaureate learning goals: Competence in the discipline, Intellectual and Practical Skills, Personal and social responsibility, Integrative learning

3) Students will develop and appreciate the importance of connections between other academic disciplines and the biological sciences and the social relevance of biology.
 Baccalaureate learning goals: Competence in the discipline, Knowledge of human cultures and the physical and natural world, Intellectual and practical skills

4) Students will be able to implement the skills needed to be life-long learners in any field of study.
 Baccalaureate learning goals: Competence in the discipline, Knowledge of human cultures and the physical and natural world, Intellectual and Practical Skills, Personal and social responsibility, Integrative learning

To clarify these expectations to students, the Department of Biological Sciences posts these learning outcomes on its website home page (http://www.csus.edu/bios/). Furthermore, course learning outcomes include course-specific summaries of these four learning outcomes within syllabi. The “key concepts” identified by the Department are organized into three concept areas: Cellular and Molecular Biology; Ecology and Biodiversity; and Structure and Physiology of Living Organisms. Within each of these areas, specific learning outcomes have been identified at factual, conceptual, procedural, and metacognitive levels. As an example, in reference to structural/functional relationships, outcomes include:

- Factual Knowledge: Students should recognize and recall examples of the relationship between the structure and functional processes. Examples of this level of understanding include, but are not limited to:
 - Recognizing the cell as the basic unit of life, as well as the how the structural elements of the cell relate to the important functions performed by the cell
 - Recognizing that biological communities are composed of different trophic levels that interact to produce complex ecosystems

- Conceptual Knowledge: Students should have a conceptual understanding of the structure/function relationship. Examples of this level of understanding would include, but are not limited to:
 - Interpreting the importance of feedback loops and homeostatic control in maintaining the internal environment
 - Explaining how the structure of nucleic acids leads to self-replication
 - Differentiating between the fundamentally different processes that control growth and development in plants and animals

- Procedural Knowledge: Students should have an understanding the range of scientific approaches taken to structure/function relationships. Ex. of this level of understanding would include, but are not limited to:
 - Applying the polymerase chain reaction and analyze/evaluate the results of a prescribed experiment
 - Applying the Lotka-Volterra model to analyze data on changes in pop. size within a community
Section: Clearly Developed Learning Outcomes

- Metacognitive Knowledge: Students should have the ability to appropriately contextualize and develop strategies to further understanding about the structure/function relationship. Examples of this level of understanding would include, but are not limited to:
 - Designing an experiment to test predictions about biochemical differences between two cell lines
 - Use knowledge of nutrient cycling to develop and test predictions about the influence of human actions on the environment

The “key skills” introduced in our basic courses are: current field methodology, current lab methodology, the scientific method, reading and writing skills, critical thinking, collaborative skills, literature review and application of concepts in biology. All of the curricula require BIO 100 (Introduction to Scientific Analysis), a course that cannot be articulated with courses at other institutions, and must be taken by both our native students and transfer students as one of the first upper division courses within the major; it is meant to serve as a bridge course between the lower and upper division. The scientific skills presented in this course reinforce the basic skills introduced in the lower division and extends them to a level where students feel comfortable with generating hypotheses, interpreting results from other studies, and presenting data. The BS General Biology degree requires a breadth of course work and thus ensures the development of proficiency in the skills necessary to generate and communicate scientific knowledge, with application to other fields of study and life-long learning. This degree also presents the opportunity for individualized specialization within a self-designed field of study.

Updated Plan that Clearly Identifies Program Learning Goals, Assessment Strategies, and Processes by Which Data Inform Program Curriculum Decisions

The Department has collected data on various aspects of the prior undergraduate programs that can inform our future evaluations of the new and revised programs introduced in Fall 2011. They include previous departmental assessment reports, assessment of the NSAC advising center, senior survey results, and an alumni survey. Similar strategies will be employed in assessments of the new and revised programs. In addition, for the new curricula, the Department has identified the Experimental Design Ability Test (EDAT)\(^1\), which will address each of the outcomes identified above (1-4) by examining student-driven experimental design. The EDAT, which will be administered for the first time in Spring 2012, assesses students’ knowledge of the basic and critical elements of a good experiment, and depending on the prompt used, the EDAT can be adapted to assess specific factual and conceptual knowledge important to different fields within the biological sciences (outcome 1). The EDAT will further evaluate students’ ability to generate and communicate scientific knowledge, as it requires students to design and describe their own experiment in essay format (outcome 2). The prompts for this instrument address authentic problems that have relevance to students’ lives. Students must understand the process and nature of science, with the ability synthesize information and make connections to other disciplines in order to evaluate real-world scenarios (outcome 3). Lastly, students must employ creativity and other higher order thinking skills, as they analyze the information provided, evaluate the claim, and ultimately solve the problem (outcome 4).

The EDAT will be administered at several points within the curriculum: in BIO 1 (Introductory level), BIO 100 (Intermediate level), and BIO 188 (Advanced level). An evaluation of EDAT scores at these levels will allow an assessment of student learning throughout the curriculum. Further, this will give an indication of student learning at different levels in order to establish benchmark standards that will be used in informing departmental curricular decisions. In the first administration of the EDAT, the assignment will be a stand-alone assessment (i.e., not integrated into the curriculum). However, future assessment using the EDAT will be incorporated into the curriculum of courses involved so that an assessment of knowledge can be made in an appropriate context.

External Assessment and Accreditation Outcomes, where appropriate

We are currently in the process of Program Review. Our external evaluation is planned for April, 2012.

\(^1\) Experimental Design Ability Test (EDAT)

Described in: Sirum and Humbug, Bioscene: *Journal of College Biology Teaching Volume 37(1) May 2011*
Section: Advising Program and Graduation Success

Criterion 3: Advising Program and Graduation Success

We are particularly proud of our efforts in advising students. Since 2006, the Department:

- implemented a new advising center to provide comprehensive attention to incoming students
- developed and implemented sophisticated online advising tools
- structured our gateway courses to be more inclusive of diverse student learning styles
- began efforts to intrusively advise students at risk of failing introductory gateway courses, recently obtaining (in cooperation with other faculty in our College) a $2 million National Science Foundation (NSF) grant (Project PASS) to support student success in introductory science.

Graduation Rate

According to the 2011 Fact Book, the 5-year graduation rate for freshmen entering in Fall, 2005 is 23% (6-yr rate = 40%). While we understand that these numbers are indicative of student flow through the University, we have data that show they are highly inaccurate with regard to the graduation rate of our “real” majors, in part because a substantial number of students declare biology without taking, or even intending to take, any actual course work in the degree (e.g. we investigated 40 “declared” biology majors taking a non-majors service course this semester; only 2 intended to complete a Biology degree, the rest intended to be take pre-nursing course work, with no courses that could apply to the Bio degree). Biological Sciences attracts individuals interested in health professions (which represent the great majority of incoming freshmen at our orientations); thus, many students declare Biology when they really are interested in Kinesiology, pre-Nursing, or Health Science, and the flow out of the major is large. Additionally, students often declare Biology midway through their academic careers and come to us as juniors or seniors (e.g. in BIO 1, the first majors course, 26% of enrolled students were Jr/Sr Biology majors in Fall 2010); because our course work is specific and sequential, flow into the major includes many students who then take 7 years (or more) to graduate. The take-home message is that institutional statistics are clouded by variables we cannot control. Using SacVault, we have taken 'snapshots' of students at different levels of our program to obtain a more accurate view of the graduation rates of “real” biology majors.

Analysis using BIO 1, first introductory required course (this course has no pre-requisites): 47%* of freshmen taking this course in Fall 2006 (first offering) or Spring 2007, had graduated or were set to graduate by Spring 2011 (5 year mark); 69%* are on track to graduate by Spring 2012 (6 year mark). [*students individually tracked]

Analysis using BIO 184, a mid-level required course: Majors who began here in 2004 (similar data pool to Fact Book) took Genetics around Fall 2007/Spring 2008. Data indicate that in fact, 83% of biology majors taking Genetics during those semesters have graduated, the majority of them (83%) by Spring 2009, the 5-yr mark for the 2004 entering freshmen class. While we are aware it is difficult to separate out transfers from freshmen in this analysis, we note that the Fact Book reports only a 27% 3-yr graduation rate for transfers entering Fall 2007.

Conclusion: It is clear that for “real” biology majors (those who take even the most introductory majors course), the graduation rates are much higher than those indicated by the Fact Book, and are likely between 50-60%.

Regardless, we do note that lower graduation rates tend to be the norm in areas that have difficult lower division requirements (CSU 5-yr graduation rate in STEM disciplines = 34.7%). To that end, we have invested a great deal of faculty energy and resources into the care of our introductory students. Full-time faculty (including our Science Education expert) teach the majority of our lower division core, and these courses are structured to assist students with different learning styles and study skills become as successful as possible. Our new PASS grant (shared with faculty from Chemistry and Physics) is designed to increase student success in gateway courses throughout the College, and we have intrusive advising for all freshmen and transfers. Programs in the College that assist students traditionally at-risk, such as the Science Educational Equity program and the Louis Stokes Alliance for Minority Participation program, have their roots in our department, as our faculty have in large part developed or obtained funding for these programs.
Distribution of Advising Responsibilities Among Faculty Members

Demographic and technological changes have radically changed the way advising is done within the department. In 2006, the department had approximately 916 majors and 26 Full Time Faculty (35:1), whereas now we have more than doubled to 1550 majors and 18 FTF (86:1) [*plus 3 FERP faculty]. The total number of majors greatly exceeds the number of full-time faculty available to advise. Previous attempts at mandatory advising were ineffective due to the high student/faculty ratio, so we amended it to focus on the most at-risk students (freshmen and first-semester transfers); other students are strongly encouraged to see their advisor. Incoming students are required to see an advisor in our advising center (Natural Sciences Advising Center, NSAC); advisors there refer students to a faculty member in their area of interest. All full-time faculty share advising responsibilities, and NSAC provides all students with career advising information.

Proactive Advising Contact with Students to Assure Progress to Degree

NSAC was piloted in 2009 to provide more comprehensive advising to incoming students, and has been largely staffed by our invaluable retired faculty who maintain diligent logs about which students visit and why. Using Sign-In software and an Exit Survey designed by Biology faculty, they have compiled information on the 1300+ students that are served by NSAC every semester. Students came for a variety of reasons:

- 86% come seeking advice on course selection
- Many are interested in career advising (75%) or internship opportunities (63%) – NOTE: to address this interest, we now have our Career Center liaison, Shannon Wells, holding office hours in NSAC
- Students come in for help with departmental/university forms (53%), to find a faculty career advisor (51%), or are interested in interpreting transfer credit (44%)
- A growing number are coming for assistance with academic issues, seeking study tips (37%), looking for study groups (29%) or seeking workshops on study skills or time management (40%) NOTE: to address these concerns, an NSF grant has funded a new staff position to assist with student success in gateway science courses. This new staff member began this semester, and will focus her efforts on Early Intervention with at-risk students in our gateway courses. She is housed in NSAC, and her position is funded by the PASS grant, a joint project led by faculty in Biology, Chemistry, and Physics.

Program Roadmap to Curriculum Completion and Graduation Success

We have long published “ideal” schedules for students within the major, for both 4-year and 5-year plans. We regularly publish schedules for courses that are not regularly offered (e.g. odd springs or fall only). Faculty members consult the published multi-year schedule when advising students, and we have created advising templates for all Biology programs. To assist with graduation petitions, biology-specific templates are available on our website (http://www.csus.edu/bios/Forms.html).

Use of Technology to Supplement and Strengthen Program Advising Effort

The Department has created and maintains interconnected websites and online tools that have partially offset the impact of the tremendous change in student:faculty ratios, allowing us to disseminate advising information among faculty as well as direct students to information.

- NSAC – The Natural Sciences Advising Center makes use of online appointments (http://saweb.csus.edu/students/aascheduler/), and maintains a website and Facebook page (http://www.facebook.com/pages/Hot-Stuff-at-NSAC/199202573428705) with current meetings, internships, job opportunities, etc. All websites and appointment and exit survey software were developed or adapted by a Bio Sci faculty member.
- Pre-Health website (http://www.csus.edu/prehealth/): this site is intended for bio majors and other CSUS students interested in a professional health-care related degree program following graduation. The site consists of approximately 17 web pages of information (and dozens of links) which contain extensive information regarding dozens of health professions, links to on-campus pre-health advisors by major and profession, prerequisite comparison for five of the most common pre-health professional degree programs, links to local health organizations' volunteer contact information, links to campus pre-health
Section: Advising Program and Graduation Success

student organizations, dozens of links to external programs and ancillary sites, links to other campus advising sites, including: Departmental NSAC, Career Center, and detailed FAQ.

- Department of Biological Sciences website (http://www.csus.edu/bios/): this site contains approximately two dozen web pages, most of which are devoted to advising and otherwise empowering students by providing them with tools to find information and help from faculty and staff. It contains 13 pages of advising sheets, links to online syllabi, advisors by specialty, scholarships, employment, internships, seminars, faculty research, student associations, SEE, MOSS, science educational sites, GE courses, and the BIO sections of the catalog.
- Sacsend to inform all majors of upcoming advising holds, study skills workshops, etc.

Post-degree Success, Graduate Impact on Community, etc.

Our 2009 Alumni Survey (187 respondents, 75% of whom had graduated in the past 3 years) indicated that the largest subset of our graduates had found work in the health care arena (27%), with others working in clinical or research labs (20%) or for the government in some capacity (16%). 20% were in graduate or professional school; all others were employed, with only 2% working in a field unrelated to biology. Perhaps even more telling, 86% of respondents indicated that their employer considered it important that their degree be in the biological sciences.

Our graduates are very successful at gaining entry to graduate and professional programs. A recent survey of faculty (who provided information on all applicants seeking letters of recommendation between 2006-2011; all but two faculty responded) indicated the following: (data www.csus.edu/bios/temp/quartile_1290847qwel;rj.html)

- Medical school: 66 applicants, 41 matriculants = 62% success rate [National avg = 43.5%]
- Dental school: 34 applicants, 19 matriculants = 56% success rate
- Pharmacy school: 39 applicants, 25 matriculants = 64% success rate
- Nursing/Nurse Practitioner: 15 applicants, 12 matriculants = 80% success rate
- Other health care fields (e.g. MPH, vet): 20 applicants, 17 matriculants = 85% success rate
- Graduate programs in science: 114 applicants, 76 matriculants = 67% success rate
- Teaching credential programs: 11 applicants, 10 matriculants = 91% success rate

[Note: These statistics are conservative estimates. Instances where we did not know the fate of the applicant were counted as unsuccessful]

We realize that our success rates are quite high, something we attribute to intrusive, purposeful, and honest advising. If a student is not likely to meet with success when pursuing a particular career, we gently steer them towards an area where they will reach their professional goals.

According to the U.S. Bureau of Labor, “Employment of biological scientists is expected to increase much faster than the average for all occupations” and is expected to grow 21% over the current decade, as research and development in the biological sciences continue to drive growth and discovery. Sacramento ranks 22nd among metropolitan areas with the largest employment levels in research, testing and medical laboratories, with a work force of 5,101 in 2008 (Sacramento Business Journal, 2010). The University of California at Davis Health System is centered 2 miles from campus. Its "economic impact...is close to $3.5 billion...and more than 20,000 jobs (Ryan Sharp, director of the Center for Strategic Economic Research). The rate of growth of the UCD Health System is substantially greater than other segments of the regional economy. For example, total NIH funding for the School of Medicine has more than tripled in the past ten years ($200 million in 2011), according to the UCD news room.

Sacramento also serves as a center for various state and federal agencies that employ our students (e.g. CA Fish and Game, US Fish and Wildlife, US Forest Service, Department of Water Resources, National Park Service, Bureau of Land Management, Army Corps of Engineers, and the Regional Water Board).

The combined growth in biotechnology and medical research in this region makes our department an important pipeline of technically trained employees. The rapid growth in our number of majors indicates that students themselves are responding to changes in employment demographics.
Criterion 4: Strength of Teaching Performance

Note: Faculty teaching in all programs in the Department of Biological Sciences are held to the same standards with regard to teaching performance. Therefore, responses relating to this criterion apply to all Biology programs. The Department of Biological Sciences is committed to quality teaching, and takes pride in the fact that five of its faculty have received the College Outstanding Teaching Award (with more nominated).

Articulated Program Statements regarding Quality of Teaching

Examples of documents that include articulated statements regarding this commitment and selected excerpts from these documents are provided below.

1. Department RTP Policy: Current Department RTP Policy includes the following statements:

 The Department of Biological Sciences places primary emphasis on Teaching Performance and shall weight performance in this category no less than 55% in the evaluation of candidates for retention, tenure, and promotion. In addition, competent teaching performance shall be the primary and essential criterion for retention, tenure, or promotion. (note: in practice, the normal weight assigned to teaching performance under current policy is 80%, a weight that is proposed to be reduced to 60% in reviews/evaluations beyond the first couple of years in residence, though still maintaining the eminence of the category).

 The Department of Biological Sciences is strongly committed to advancing the teaching mission of the University through classroom instruction and non-classroom activities that foster the intellectual and personal development of students.

2. Department Hiring Policies: When hiring a new full-time tenure-track faculty member, evidence of potential for teaching effectiveness and commitment to teaching is the first consideration brought to bear by the faculty on the Search Committee, and is required by policy set forth in the Department’s Governance model. The job announcement is crafted in such a way as to attract teacher/scholars. A statement such as “teaching experience at the college level is required” is included and applications must include statements of both teaching and research interests. In paper screening selection of candidates for interview, ~40% of the weight is accorded specifically to evidence of potential for teaching effectiveness in assigned courses, including evidence of: breadth of coursework and/or experience in biology, potential for teaching lower division biology for majors and non-majors, potential for teaching effectiveness in area of specialization, and experience with diverse student groups. During the interview, candidates are asked to present a teaching seminar in addition to showcasing their scholarly work. As in the case of paper screening, at least 40% of the weight in making a hiring recommendation from among the candidates interviewed is accorded specifically to potential for teaching effectiveness.

 In part-time hiring, candidates are required to provide a statement of qualifications for the teaching assignment, and prior teaching performance evaluations are given substantial weight in rankings.

Ongoing, Meaningful Assessment of Teaching Performance of Faculty, Post-Tenure

Post-tenure, the importance of teaching performance (which is given significant weight in RTP, see above) is given the same weight in promotion from Associate to full Professor as in the earlier RTP cycle. The Department encourages continued excellence in Teaching Performance through a 5-year review process, governed by its Policy on “Evaluation of Tenured Faculty not subject to RTP Review.”

Part-time faculty members are evaluated on an annual basis by the Department’s Executive Committee, which is summarized in a letter to each individual. They are also invited to meet with the Committee to discuss any aspects of their evaluation, and are referred to the Center for Teaching and Learning if they are interested in working on specific aspects of their teaching.
Multiple Measures of Teaching Performance of Full-time and Part-time Faculty Members

Multiple measures include:

- **Student Evaluations:** The Department takes great care to solicit information from students regarding the quality of our teaching in an ongoing fashion. All pre-tenure full-time faculty members and all part-time faculty members (regardless of experience) are required to have all classes evaluated by students every semester. These evaluations are thoroughly reviewed in RTP considerations. Our RTP policy specifies that: while no minimum instructor performance rating is specified as a condition for retention, tenure or promotions, faculty being evaluated should be advised that an average instructor performance rating below 7.5 (on a 10 point scale) across all courses taught will necessitate explanation and substantial evidence of teaching effectiveness from other sources. Faculty members being evaluated are also advised that high instructor performance ratings in student evaluations are not in themselves sufficient to demonstrate teaching effectiveness. Faculty members who have completed the promotional cycle (Full Professors) are also required to have their classes evaluated (at least two courses per year, although most continue to have every course evaluated every semester). Part-time faculty members are required to have student evaluations for all courses taught, and these are carefully considered and heavily weighted by the Department’s Executive Committee in its annual evaluation of their review of part-time faculty.

- **Additional Measures of Teaching Performance:** In all RTP Periodic Evaluations and Performance reviews, candidates must provide a) a reflective statement on teaching (“Overview of Teaching Effectiveness”), and b) Course syllabi and samples of course materials produced by the candidate for courses taught during the semester preceding the evaluation/review. In addition, after the first two years in residence, full-time faculty must provide evidence additional contribution to the teaching mission of the Institution, which extends beyond their effectiveness in classroom teaching. Examples include: evidence of a positive impact upon the lives and achievements of students, evidence of extra assistance for student learning such as preparation of study guides, revisions of laboratory exercises, preparation of audio-visual aids, preparation of tutorial materials, conducting review sessions or open laboratories, providing adjunct courses, and working with study groups, evidence of supervision of students engaged in special activities such as graduate research, undergraduate research, service learning, internships, volunteer work, laboratory preparation, and independent study, and evidence of receiving teaching awards or honors, or other noted contributions to the curriculum. Although multiple measures of effective teaching performance are clearly delineated for full-time faculty, the Department Executive Committee is in the process of considering a request for more detailed information from part-time faculty members as part of their yearly evaluation process. This would include sample exams, class assignments, etc. All tenure-track faculty members are required to participate in reviewing and ranking part-time applications, with priority given to applicants with demonstrated teaching effectiveness. Transcripts, a statement of interest and teaching philosophy are required and are rigorously assessed during the hiring process.

Systematic Program Attention to Problematic Individual Teaching Performance

Full-time faculty members are addressed primarily through the RTP process, where a letter is generated in which each candidate’s strengths and possible areas of improvement are articulated. This feedback allows the candidate to see where Teaching Performance needs improvement. In addition, the Department’s RTP policy requires that the Professional Development Committee (consisting of the RTP Committee Chair, Department Chair, and another senior faculty member) follow up with the candidate in a meeting at the completion of each evaluation cycle. As noted above, part-time faculty are invited to meet with the Committee to discuss any aspects of their evaluation, and are referred to the Center for Teaching and Learning if they are interested in working on specific aspects of their teaching. Perhaps, most importantly, the Department adheres to the view that problematic teaching performance can be avoided by its systematic engagement of faculty in activities and discussions with the specific intention of improving curriculum design and improving teaching performance.
Criterion 5: Program History and Development Status

Level of program development (e.g. young, growing, mature)

The foundations of the Biological Sciences programs, as a whole, are mature (fun fact: we retain the only CSUS faculty member on staff when the university began), but they are continually evolving as our knowledge of and methods of studying the natural world expands. As a department we respond to these changes with on-going review and revision of our curricula. Thus, although the foundations of all programs have been in place since this institution began, each program may also be viewed as a work in progress, which responds to changing demands of the field and of the scientific workforce.

Since 2006, the Department of Biological Sciences has added several new courses and completely modernized its curricular offerings. In all instances, advances in scientific discovery, needs of the state and local workforce, and student interest were carefully considered when crafting the course offerings.

In a sense, the revised BS in General Biology represents the base program in Biological Science, which includes in its required upper division courses a relatively equal emphasis on each of the three core concept areas identified by the Department (i.e., Cellular and Molecular Biology; Ecology and Biodiversity; and Structure and Physiology of Living Organisms). Beyond this core, students select electives in areas of their choosing.

Ability of program to adapt to current demands

In 2006, a new introductory biology sequence – BIO 1 (Biodiversity, Evolution and Ecology) and BIO 2 (Cells, Molecules and Genes) - developed to align with recent advances in the life sciences, was introduced for all undergraduate programs. This was followed by a reexamination of the rest of the curriculum, with the ultimate goal of creating a structure that allows students to specialize within the biological sciences to meet the demands of a rapidly changing and sophisticated STEM workforce. We introduced a new “mid-level” core for all programs consisting of Genetics – BIO 184 (expanded to four units, to include more problem-solving and application of ideas) and a new course, Introduction to Scientific Analysis - BIO 100, which focuses on intermediate skills such as graphic analysis, reading and writing scientific papers, and interpretation of tables and figures. BIO 100 is also the “equalizer” course that combines our native students and transfer students, ensuring that all who pass to the upper division are competent in these vital skills. For the BS in General Biology, the upper division core for all students pursuing this degree program also includes junior/senior level courses in General Microbiology (BIO 139), Molecular Cell Biology, General Ecology (BIO 169), General Biochemistry (CHEM 161) and a new course in Evolution (BIO 188). Since the upper division core does not include a course from the Departmentally identified core concept “Structure Function” area, students are required to select a minimum of 3 units of electives from courses with this emphasis, and 14 elective units to complete the requirements for 36 upper division units in the major (includes Chem 161). The adaptability of the program derives from the relatively large number of elective units, from which additional emphases or emerging field of Biology can be pursued without or in advance of the development of concentrations in these areas. In addition, elective flexibility in this program allows it to serve as “fall back” for students who initially declared one of the other concentrations, but who find themselves no longer interest in or unable to complete the specific requirements for their initial program.

Future goals of program

As this restructured program was just introduced in Fall, 2011, our immediate focus will be on assessing its success in preparing students both academically and for the STEM workforce. Although cutting-edge topics and techniques have been introduced into our curriculum, the biological sciences are changing so rapidly that we anticipate further restructuring in the future; however, we feel more than adequately prepared to address these needs, as our faculty are now well-versed in the process of Backwards Design and scaffolded curriculum.
Program Name: B.S. General Biology, Biological Sciences

Criterion 6: Impact, Justification and Centrality to University Mission

Centrality to the University’s Mission:
Like all programs offered by the Department of Biological Sciences, the B.S. in General Biology program advances the University’s mission through its disciplinary focus on preparation of the workforce needed to address scientific issues affecting the region and the state and its pedagogical emphasis on the development of intellectual and practical skill sets (e.g., inquiry and analysis), which are broadly applicable to understanding and addressing issues beyond the realm of science.

Alignment with the University’s Baccalaureate Learning Goals:
The BS in General Biology program is closely aligned with the Baccalaureate Learning Goals. Specifically

- **Competence in the Discipline** is met through a modern curriculum driven by a well-defined set of learning outcomes that are current, focused and flexible enough to accommodate changes in the field.
- **Knowledge of Human Cultures and the Physical and Natural World:** The biological sciences focus on the study of the living world, and because scientific understanding is pursued on some level by all human cultures, science is a global endeavor. At all levels of study within our department, contributions of various cultures to the study of science are highlighted and given appropriate focus.
- **Intellectual and Practical Skills** are developed at all levels of our “three-tier” curricular design (introductory, intermediate, advanced). By its very nature, science involves critical thinking, analysis, quantitative and technological literacy, and problem-solving (both individually and in groups). Students work with lab/activity partners in all introductory and intermediate courses, as well as most advanced classes. Expectations of student lab performance, data analysis, and experimental design scale upward (i.e., are “scaffolded”) as the student progresses through the curriculum.
- **Personal and Social Responsibility** are highlighted in all applications of science. As science progresses, especially in its applications to human health, ethical, legal, and societal questions multiply.
- **Integrative Learning:** As a science, biology has its foundations in the disciplines of mathematics, physics, and chemistry; as such, it is really an applied science that integrates these “basic” sciences along with many other fields that affect its application to our society.

Unique Program Characteristics/Addition Distinctiveness to our Campus
Although BA/BS degree programs in Biological Sciences and/or its subfields are offered in most, if not all, four-year universities, it is likely that that there are few that were developed using “Backward Design” and employ the scaffolded learning outcomes design described above.

As should be expected, the nearest 4-year university offering baccalaureate degrees in the biological sciences is UC Davis. All of the UCD programs, most of which are housed in their College of Biological Sciences, are designated as BS programs. Specifically, UCD offers a general BS in Biological Sciences. Sacramento State’s programs can be distinguished for the UCD programs in two very important ways. First, Sacramento State’s programs (including concentrations) require upper division coursework in each of three designated concept areas. This greater breadth at the undergraduate level provides students a wider range of employment opportunities, as well as the ability to more readily change areas of specialization. Second, the BA/BS programs at Sacramento State have a much stronger laboratory/field component. Unlike the programs at UCD, where most labs are offered as separate and optional courses (and taught by graduate students), most labs at Sacramento State are offered in combination with the lecture component of the course (and most are taught by faculty), providing opportunity for one-one attention and engagement of active learning and the “doing of science.” And, it is the laboratory “know how” that makes our students competitive for jobs and for acceptance into graduate programs. In addition, because there is so much flexibility in terms of elective choices, the BS in General Biology often serves a “default” or “fall back” for students who initially intend to pursue a specialized B.S., but find themselves either disenchanted with the program they initially selected, or simply needing to complete a baccalaureate degree in Biology and move on.
Section: External Demand for the Program

Criterion 7: External Demand for the Program

Community Engagement

Since 2006:

- 1,044 students in in our Genetics course have volunteered with organizations that serve developmentally-disabled adults (who may have the genetic abnormalities they are studying). Project Ride (which uses horse therapy) and the Orange Grove Adult Day School are among the projects that have benefitted
- Over 50 students have participated in teaching internships in local K-12 schools
- 160 students have joined our new student-faculty volunteer club, BioCorps, in which students donate at least 100 hours of service to the community in various projects such as Special Olympics, Bone Marrow Drives, Remote Area Medical care, 4-H’s On the Wild Side, and tutoring of local K-12 students.
- 30-35 students/yr (mostly Bio majors) from the Science Educational Equity Program have participated in outreach activities to local K-12 schools, to encourage underrepresented students to matriculate to college

Demand for the Program’s Resources and Expertise

- Our Faculty provide workshops and field experiences in support of academic programs for area high school and middle school students such as the Science Olympiad and the Academic Talent Search.
- Many faculty and staff also give several workshops annually in the Expanding Your Horizons program for young women in the community.
- To serve local K-12 schools, and to make them aware of the diversity of the animal and plant collections in Biological Sciences, staff provide tours through the vertebrate museum and the greenhouses. Since 2006, over 40 tours to 1240+ students in the region from 15 different schools, centers and programs.

Local Trends in Enrollment

Since 2006, undergraduate enrollment in the Biological Sciences major has increased 69%, from 916 to 1550. For the B.S. in General Biology (formerly called “no concentration”), enrollment has steadily grown since 2008 (the earliest concentration-specific data we have). 2008: 488 majors in this program, representing 51% of all Biological Sciences majors. Data from Spring 2012: 760 majors in this program (49% of total). In all, this is a 56% increase in three years. If we assume that ~50% of majors in 2006 were also BS with no concentration (458 students), we can say that enrollment in this program has increased 66% since 2006. With regard to proportion of majors, we believe that the small reduction is related to the introduction of the new B.S. in Biomedical Sciences.

Demand from Employers

The U.S. Bureau of Labor Statistics (BLS) reported in the 2010-2011 edition of the Occupational Outlook Handbook section on the “Biological Scientist” occupational category (http://www.bls.gov/oco/ocos047.htm) that: employment of biological scientists is projected to grow 21 percent over the 2008-18 decade, much faster than the average for all occupations, people with bachelor's and master's degrees are expected to have more opportunities in nonscientist jobs related to biology, in fields like sales, marketing, publishing, and research management, and biological scientists are less likely to lose their jobs during recessions than those in other occupations, because many are employed on long-term research projects. The ‘biological scientist” category is only one of many occupational categories that require a BA/BS degree in Biological Sciences (e.g., “science technician”, “conservation scientist”) or require a post-baccalaureate degree, certificate or license for which the BA/BS degree in Biological Sciences provides the required undergraduate preparation (e.g., health professional careers).

In addition, in our 2009 Alumni Survey (187 responses), 86% of respondents indicated that their employer considered it important that their degree be in the biological sciences. The largest subset of students had found work in the health care arena (27%), with others working in clinical or research labs (20%) or for the government in some capacity (16%). 20% were in graduate or professional school. Only 2% were in a field unrelated to biology.

Program Name: B.S. General Biology, Biological Sciences
Section: Program Size, Scope

Criterion 8: Program Size, Scope

Breadth of Coverage

Like all BA/BS programs in Biological Sciences, the BS in General Biology includes a two semester (10 units) introductory sequence, redesigned in 2006, which provides introductory exposure to key concepts, methods, and skills, determined through a “Backwards Design” process by the Department to be the most basic essentials of training in the Biological Sciences. The scope of content of the lower division courses is reflected in their titles: BIO 1: Biodiversity, Evolution and Ecology, and BIO 2: Cells, Molecules and Genes. In addition to including a laboratory component, both of the introductory courses include a one-unit activity section designed to encourage active hand-on learning and the development of intellectual and practical skills (e.g., critical thinking, writing, oral communication). The lower division core includes co-requisite courses in Chemistry, Physics, and Mathematics.

At the sophomore/junior level, the curriculum includes courses that take the key concepts and skills established earlier and delve deeper into the theoretical and factual material at their core. The student learning outcomes at this level enhance skill development and reiterate the major concepts that students are exposed to in the introductory BIO 1/BIO 2 series, with more detailed analysis of these ideas, introduction of regulatory mechanisms, and newly discovered applications of those learned concepts skills. The common courses at this level include Introduction to Scientific Analysis (BIO 100) and Genetics (BIO 184). For the BS in General Biology, the upper division core for all students pursuing this degree program also includes junior/senior level courses in General Microbiology (BIO 139), Molecular Cell Biology, General Ecology (BIO 169), General Biochemistry (CHEM 161) and a new course in Evolution (BIO 188). Since the upper division core does not include a course from the Departmentally identified core concept “Structure Function” area, students are required to select a minimum of 3 units of electives from courses with this emphasis, and 14 elective units to complete the requirements for 36 upper division units in the major (includes Chem 161). At the upper division level, students are provided advanced level instruction that includes experiential learning in the scientific method and in-depth laboratory skills. The student learning outcomes at this level emphasize experimental design and laboratory technologies necessary to operate in an ever-changing STEM workforce.

Degrees and Certificates Awarded

The BS in General Biology was called the BS with “no concentration” prior to Fall 2011. Using information from Sacvault, we have determined that the average number of degrees awarded in this program is 53 per year (data averaged over four semesters, from Fall 2010-Spring 2011).

Program Enrollment

Since 2006, enrollment in the B.S. in General Biology program (formerly called “no concentration”) has steadily grown. We do not have concentration-specific data prior to 2008; however, information from Sp 2008 indicates the following: 488 majors in this program, representing 53% of all Biological Sciences majors. Data from Spring 2012: 760 majors in the General Biology B.S. (49% of total). In all, this is a 56% increase in three years. FTES for the Department is 1529.60 for 2011-2012. Thus, we can estimate that 49%, or 749.5 FTES, are associated with the B.S. in General Biology

Program Resources and Faculty Expertise

In these challenging economic times, creating a curriculum in the biological sciences that prepares students with up-to-date concepts and skills has required tremendous creativity from the Department’s faculty. In part, these challenges have been addressed through faculty grant activity and finding nonconventional or unique partnerships and opportunities to enhance our teaching and research capacity (e.g., substantial donations of supplies and equipment from industry). Although additional faculty positions are desperately needed to meet the Department’s enrollment demands, there are 3-6 tenured/tenure-track faculty members with doctoral level training in each of core concept fields included in B.S. in General Biology, providing strong full-time faculty engagement in the curriculum.

Program Name: B.S. General Biology, Biological Sciences
Criterion 9: Internal, Non-major Demand for the Program

Courses in Biological Sciences are used to meet the requirement for General Education in Areas B2 and B3, and provide service for other majors focused on allied health (e.g. Kinesiology, Health Science, Nursing, RPTA) or other areas of science (e.g. Chemistry, Environmental Sciences). GE/service constitutes 50.2% of total departmental FTES. Faculty members across the department contribute to GE/Service courses.

Service courses (accompanying AY FTES)

<table>
<thead>
<tr>
<th>Service Course</th>
<th>Other majors served</th>
<th>% non-majors</th>
<th>FTES total</th>
<th>FTES non-majors</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 22 (Anatomy)*</td>
<td>Chem, Nursing, Kins, Health Sci, FACS, “pre-med”</td>
<td>86%</td>
<td>96.0</td>
<td>82.40</td>
</tr>
<tr>
<td>BIO 25 (Anatomy/Physiology I)</td>
<td>Same as above</td>
<td>93%</td>
<td>101.33</td>
<td>94.67</td>
</tr>
<tr>
<td>BIO 26 (Anatomy/Physiology II)</td>
<td>Same as above</td>
<td>95%</td>
<td>66.13</td>
<td>62.67</td>
</tr>
<tr>
<td>BIO 39 (Micro -Allied Health)</td>
<td>Chem, FACS, Nursing, CHDV</td>
<td>98%</td>
<td>13.6</td>
<td>13.33</td>
</tr>
<tr>
<td>BIO 121 (Cell Physiology) *</td>
<td>Chem, Envt Stud, FACS, Nursing, Psych, Business</td>
<td>10%</td>
<td>35.40</td>
<td>3.40</td>
</tr>
<tr>
<td>BIO 122 (Advanced Anatomy)*</td>
<td>Chemistry, Kins</td>
<td>85%</td>
<td>9.07</td>
<td>7.73</td>
</tr>
<tr>
<td>BIO 131 (Systemic Physiology)*</td>
<td>Same as for BIO 22</td>
<td>59%</td>
<td>78.13</td>
<td>45.87</td>
</tr>
<tr>
<td>BIO 139 (General Microbio) *</td>
<td>Same as for 39</td>
<td>44%</td>
<td>68.27</td>
<td>29.87</td>
</tr>
<tr>
<td>BIO 160*</td>
<td>Envt Stud, others</td>
<td>22%</td>
<td>51.00</td>
<td>11.20</td>
</tr>
</tbody>
</table>

TOTAL NON-MAJOR FTES 351.14

*also fulfills major or elective requirements in several programs within Biological Sciences

GE courses (accompanying AY FTES)

<table>
<thead>
<tr>
<th>GE Course</th>
<th>FTES total</th>
<th>% non-majors</th>
<th>FTES non-majors</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 1** (Biodiversity, Ecology, Evolution)</td>
<td>160.33**</td>
<td>52%</td>
<td>83.00</td>
</tr>
<tr>
<td>BIO 7 (Introduction to the Science of Biology)</td>
<td>40.27</td>
<td>100%</td>
<td>40.27</td>
</tr>
<tr>
<td>BIO 9 (Our Living World)</td>
<td>24.4</td>
<td>100%</td>
<td>24.4</td>
</tr>
<tr>
<td>BIO 10 (Basic Biological Concepts)</td>
<td>121.20</td>
<td>100%</td>
<td>121.20</td>
</tr>
<tr>
<td>BIO 15L (Lab Investigations in Biology)</td>
<td>12.6</td>
<td>100%</td>
<td>12.6</td>
</tr>
<tr>
<td>BIO 20 (Biology: A Human Perspective)</td>
<td>135.60</td>
<td>100%</td>
<td>135.60</td>
</tr>
</tbody>
</table>

TOTAL NON-MAJOR FTES 417.07

** This course is required for all Biological Sciences majors

Research resources

The Biological Sciences department houses many resources that serve other programs, including the Greenhouse (which, for example, provides research space for students in Environmental Studies), the autoclave (a large sterilization unit that processes materials for all of NSM), and the human cadaver facility, which serves programs in HHS, including the graduate program in Physical Therapy. Faculty from our department obtained the original funding for (and continue to obtain resources to support) the CIMERA interdisciplinary research facility, which serves as a collaborative research hub for the cellular and molecular sciences, and involves faculty from Chemistry. Faculty and staff from our program also maintain and continue to develop the diverse plantings of the University Arboretum, located on the north side of campus. The Department maintains live cultures, an herbarium, an endotherm museum, and an endotherm museum, all of which include research quality collections.
Criterion 10: Quality of Program and Resource Utilization

Faculty productivity in non-teaching areas

Scholarly and Creative Activity: The Department embraces a broad definition of scholarship, similar to that initially described by Ernest Boyer to include the scholarship of discovery, the scholarship of integration; the scholarship of application; and the scholarship of teaching. Each faculty member is expected to pursue a program of scholarship that is reflected by accomplishments that: 1) contribute to the development or creation of new knowledge, OR 2) contribute to the critical analysis and review of knowledge within disciplines or the creative synthesis of insights contained in different disciplines or fields of study, OR 3) apply findings generated through the above to solve real problems in professions, industry, government, the university, and/or the community, OR 4) contribute to the development of critically reflective knowledge about teaching and learning. This enables the Department to contribute to the University’s multi-faceted mission by encouraging faculty to apply their varied talents, interests, and capabilities in ways that ensure that all facets of this mission receive substantial attention.

Since 2006, faculty members in the department of Biological Sciences (all of whom serve the B.S. in General Biology) obtained $14.67 million in grant funding (source: Research and Contract Administration). In addition, faculty members secured over $1 million in donated equipment and supplies (e.g. cell culture hoods, incubators, analysis kits, a mass spectrometer, etc.). Faculty members in this area are also active in research on science education, and collectively have made 127 oral and poster presentations to more than 40 different recognized, national professional organizations (e.g. American Physiological Society, Society for the Study of Evolution, California Association of Medical Laboratory Technology, Human Anatomy and Physiology Society (HAPS), California Wellness Foundation, CSU Academic Council, National Association of Science Teachers, American Educational Research Association, California Science Teachers Association). Finally, many faculty members participate in traditional bench/field research and have published forty-one articles in refereed journals since 2006. (raw data may be found at: http://www.csus.edu/bios/temp/quartile_1290847qwel;rj.html)

The Biological Sciences faculty are also well-represented in professional societies, serving leadership roles such as: Reviewers for the National Science Foundation (several faculty), Editorial Board member, Advances in Physiological Education; Chair, American Physiological Society Awards Committee; Program Leader, 4-H “On the Wild Side” program; Team Leader, Sacramento Wildlife Count; President, CSU Biology Council; Faculty Liaison and Steering Committee member, HAPS Institute for graduate study; Co-PI/ Lead Project Director for the state-wide CSU-LSAMP project which engages 22 CSU campuses in effort to broaden participation in STEM; Officer (including President) of the national NIH-NIGMS Bridges to the Baccalaureate Directors Association.

In some cases, our grant projects serve students from all undergraduate programs in the Biological Sciences and also include students from other departments in NSM and ECS. These include: 1) Peer-Assisted Student Success (PASS) Program, funded by the National Science Foundation (NSF) ($2,000,000/5 years); collaborative effort with faculty from Chemistry and Physics/Astronomy. This project aims to increase the academic success of students in science gateway courses through early intervention, peer-assisted learning, and study programs; 2) The CSUS (campus –based) Louis Stokes Alliance for Minority Participation Program, serving both NSM and engineering students ($60,000/yr for 5 years) aims to increase the number of students from underrepresented groups graduating from CSUS in the STEM disciplines. 3) Preparation of Pre-Health Professional Students: The Source for Diversity in the Health Professions, funded by the California Wellness Foundation ($160,000 /3 years), supports efforts to increase the number underrepresented students entering health professional schools.

Service: Faculty in the B.S. in General Biology are also engaged in serving students in undergraduate programs:

1) Science Educational Equity (SEE) Program: a comprehensive academic support program for students who face social, economic, and educational barriers to careers in the health professions, science research, and science

teaching. Faculty members from our program have directed its activities since its inception; 2) **The Health Professions Pipeline Partnership Project (HP)**, funded at different times by the Office of State-wide Health Planning and Development and The California Wellness Foundation ($10,000-15,000 annually), a partnership with local schools which provides science enrichment activities for K-12 students; 3) **The Sacramento College Coalition for Future Scientists** (aka the CSUS-Los Rios Science Transfer Project), funded from NIH-NIGMS (~$1,000,000 over 5 years) aims to increase the number of students from underrepresented groups who transfer from the Los Rios CC District to CSUS to complete baccalaureate degrees in majors related to careers in biomedical research; 4) **The California State University-Louis Stokes Alliance for Minority Participation**, funded by NSF ($4,000,000/5 yrs). A faculty member from Biological Sciences serves as Lead Project Director for this CSU-wide project; engages 22 CSU campuses in efforts to broaden participation in STEM disciplines.

Service in University Governance

Faculty members from Biological Sciences are well represented on committees at the College and University levels. In the current year, examples include: CTL Advisory Board, Graduation Initiative Steering Committee, Faculty Senate Executive Committee, Academic Information Technology, CSUS Student Research Competition, Animal Care and Use, Program Review Oversight Committee, University Grade Appeal Committee, as well as every College-level committee. Faculty members from our department have also chaired or served on search committees for numerous administration positions and directorships across campus.

Working with other programs

Our faculty are highly collaborative, working with others across campus on projects described above (CSU-LSAMP, PASS, SEE, Noyce) as well as an intra-campus service learning research program with faculty from FACS and Sociology. Three Biological Sciences faculty members are working with the College of Continuing Education on the development of the first Summer Academy for high school students (focus on biotechnology and healthcare career opportunities), and others have written collaborative grants with Teacher Education to provide scholarships for future science teachers. Our faculty have taught in First Year Seminar, which requires a great deal of work across campus lines, and two are also mentors for the Guardian Scholar Program.

Effective sharing of resources

Faculty share resources for both research and teaching. Most faculty share office space (55% of full-time and 100% of part-time), and most research faculty members share lab space and equipment. The CIMERA facility supports integrated research activities by faculty from both Biological Sciences and Chemistry. Faculty in teaching laboratories share equipment (e.g. microscopes, models, centrifuges, incubators and safety hoods). Students from at least five different courses - Clinical Hematology, Parasitology, Developmental Biology, Histology and Neuroanatomy – use the microscope laboratory (which houses our best scopes). This sharing of results in heavy use of this expensive equipment, which is damaging and potentially problematic, as service contracts are not always affordable. One of the most effective examples of collaboration is the Natural Sciences Advising Center (NSAC) in which retired faculty from Biological Sciences and Chemistry as well as current Biology faculty provide academic advising to students in NSM. NSAC is less than three years old but has already provided thousands of students with academic advising and information on how to succeed in the classroom. Finally, the curricula at both the undergraduate and graduate levels are structured to be efficient such that no course “stands alone.” That is, all courses may be used in more than one program. Courses required in a specific concentration are also co-listed as core concept groupings to be used as electives in other programs.
Criterion 11: Revenue and Other Resources Generated by Program

This section has been written for the department as a whole, as budgetary issues are handled on a departmental level.

Enrollment-based budgetary support from University

For our program, we receive budgetary support from the College based on FTEF (for office and facilities expenses) and based on FTES (for instructionally-related expenses). Unfortunately, for the past several years, this allocation has fallen very short of what we need to provide appropriate materials for students in our classes (in 2006-07 our $$/FTES ratio was $69.63/FTES; by 2011-12, the ratio had fallen 29% to $49.70/FTES). To maintain the quality of our program, we have resorted to charging students laboratory and field trip fees for almost every course. While in some ways this may seem like an equitable way to share the cost, we are highly disappointed that students in our program are absorbing the budgetary shortfall.

Research grants, in-kind equipment donations, fundraising

Since 2006, faculty members in our program have obtained $14.67 million in state and federal funding (source: Research and Contract Administration). In addition, faculty members secured over $1 million in donated equipment and supplies (e.g. cell culture hoods, incubators, analysis kits, a mass spectrometer, etc.). This has enabled us to create state-of-the-art laboratory experiences for our students even as the technology rapidly advances and our budget has dwindled. We would be remiss if we did not mention the fact that without these donations, we would be unable to adequately prepare our students for an increasingly complex scientific job market. We feel extraordinarily fortunate to have acquired this equipment.

Potential revenue (gifts, alumni support)

Former faculty members have been generous in their support of our facilities and students.

- Dr. Marda West, Professor of Biological Sciences from 1966-2001, generously endowed her entire estate (over $750,000) to the Department of Biological Sciences, to be used primarily for student scholarships. Every year, at least $21,000 in student scholarships are awarded to deserving Biological Sciences majors. Marda also donated her SUV to the department for collection trips and field trips. This past year, when it needed repairs in excess of its worth, Marda’s fund allowed us to replace it (total cost = $22,413).
- Dr. Albert Delisle, Professor of Biological Sciences from 1956-1977, provided an endowment (currently valued at $300,000) whose interest provides yearly student scholarships ($2000 each, with at least two awards/year) and support for student research within the department that is open to all faculty members.
- Dr. David Vanicek, Professor of Biological Sciences from 1967-2000, used excess research funds to found a Biological Conservation scholarship (yearly award of $500)
- Dr. Carl Ludwig, Professor of Biological Sciences from 1949-1980, established an endowment that funds a yearly $700 scholarship to support outstanding teaching assistants
- Dr. Miklos Udvardy, Professor of Biological Sciences from 1966-1984, provides a yearly $500 scholarship to graduate students to support their research projects

Other scholarships available to students have come from alumni and other local donors:

- McDougal-Robinson ($1000) (shared with Nursing, awarded every other year)
- Josephine Van Ess scholarship - $2000/year
- Von Saltza - $2000/yr (this award, shared with English, is awarded every other year)
- Sutter Hospital scholarship for Clinical Lab Scientists: 2 @ $1000/year

Value of other services and resources provided

The department also generates at least $5000/AY from students who enroll in our courses through Open University/College of Continuing Education. This money is used to support teaching labs throughout the department.

Program Name: B.S. General Biology, Biological Sciences