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Abstract

The harmonic oscillator has infinities that presage those of field theory arising from its
singular groups. Group regularization transforms it to a finite quantum theory based on a
quantum time. The Heisenberg group, which is unstable with respect to small changes in
its structure tensor, becomes the rotation group in three dimensions, which is stable. This
results in pronounced violations of equipartition and of the usual uncertainty relations, and to
interactions between the previously uncoupled excitation quanta of the oscillator. It freezes out
the zero-point energy of extreme soft or hard oscillators, like those responsible for the infrared
or ultraviolet divergencies of usual field theories, without much changing medium oscillators.
It unifies and quantizes the time, energy, space, and momentum variables. In some extreme
conditions this unification allows the interconversion of time and energy on a scale of 1051 W,
the Planck power.

1 The harmonic oscillator problem

The three main evolutions of physics in the twentieth century have a suggestive family resem-
blance. Each introduced a small but new kind of non-commutativity, that of accelerations in
special relativity, parallel transportations in general relativity, and of filtrations in quantum the-
ory, measured in amplitude by a new fundamental constant c, G, or ~ respectively. The seminal
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suggestion of Segal [23] that stimulated the present work specified further moves toward sim-
plicity of this gradual kind, gently modifying the commutation relations of the existing quantum
theory with new quantum constants ~′, ~′′ of different dimensions. These moves seem to lead,
perhaps unintentionally, to a finite quantum theory and a quantum space-time, goals of some
physicists since the formulation of quantum theory. They produce a theory with a simple group,
having the prior theory as a limiting case and having nearly the same continuous symmetries.
A special form of Segal’s general concept was applied retroactively to understand the relation
between special relativity and Galileo relativity [18]. More proactively, a similar regularization
of the time-independent harmonic oscillator is now under study by several groups from several
points of view [1, 8, 20, 21, 26, 27], and we regularize the time-dependent theory here.

When this process of gradual group modification regularizes a singular theory we call it
group regularization. In the process one discards the prior group in favor of the regularized one.
This critical step is omitted in some early studies of group “deformation,” which, as the name
suggests, prefer the prior group over the modified one, and retain it in the modified theory.

The linear harmonic oscillator, a constituent of all present field theories, is singular in several
significant senses. By introducing Planck’s quantum constant ~, Planck froze out the very stiff
oscillators responsible for the infinite heat capacity of cavity radiation in Maxwell’s theory, but
left the zero-point energy of electromagnetism still divergent in the ultraviolet. Heisenberg later
replaced the local Lagrangian and Hamiltonian of Maxwell by a reordering tailored to have zero-
point energy 0 for Lorentz invariance but this is non-local and in case left the other well-known
divergences of quantum electrodynamics. The quantum theory of the harmonic oscillator still
carries the germ of all these divergences in that the action of its basic operators of position q,
momentum p and Hamiltonian H ∼ 1

2 (p2 + q2) on almost every vector ψ in its Hilbert space
diverge and are therefore undefined : qψ = pψ = Hψ = ∞. Such divergences occur in a
quantum theory if and only if its Hilbert space is infinite-dimensional.

The oscillator theory is also unstable in the Segal sense detailed below. The quantum
oscillator theory is not as unstable as the classical theory, which has the operators of position
and momentum commute, and we have become accustomed to its divergencies, but it is still not
truly operational but declares outright that its basic operations q, p can almost never be carried
out.

We test group regularization on the linear harmonic oscillator, both stationary and dynamical
(time-independent and time-dependent), introducing the two Segal quantum constants ~′, ~′′
besides the usual Planck constant ~, and compare the resulting finite quantum oscillators with
the usual singular quantum oscillator.

Under group regularization, oscillators become rotators, the system Hilbert space becomes
finite-dimensional, and the resulting operations can in principle always be carried out. Group
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regularization freezes out the offending zero-point oscillations of extremely hard or soft oscillators
without greatly changing the zero-point energies of medium ones. The frozen oscillators also
grossly violate the usual equipartition and uncertainty relations. Group regularization clearly
has profound consequences for extreme energy physics: the physics of both very high and very
low energies.

This toy model illustrates how a finite quantum theory of the cavity can produce a finite zero-
point energy without conflicting with the many finite predictions and symmetries of the usual
quantum theory. We propose that the linear harmonic field oscillators considered fundamental
in present quantum physics – those of supposedly fundamental fields, not those of elastic solids,
say — are actually dipole rotators in a new three-dimensional phase space, with fixed high
angular-momentum quantum number l and with third angular-momentum component m ∼ l.
The unobserved oscillators responsible for the infrared and ultraviolet divergencies of present
quantum theories are frozen by finite quantum effects described here and contribute negligibly
to the zero-point energy.

2 Group flexing and flattening.

We review some standard concepts leading to the Lie algebraic concepts of semi-simple group
and radical. We write the non-associative Lie product and the commutator product ab − ba
also as a x b = [a, b] = 4a · b. Here 4a is a linear operator on the vector space L for each
a ∈ L. The Killing form on L is ‖a‖ = Tr (4a)2. If L is a Lie algebra, one defines the derived
algebra ∂L = L x’L as the Lie subalgebra with the space L x’L. A Lie algebra L is solvable
if ∃n ∈ N : ∂nL = {0}. The radical of a Lie algebra is its maximal solvable ideal.. A semi-
simple Lie algebra is one with vanishing radical. Equivalently, a semi-simple Lie algebra has
non-singular Killing form. An algebra that is not semi-simple we call compound . These terms
apply also to a Lie group whenever they apply to its Lie algebra.

Lie products x on a given vector space V, also called structure tensors, form a quadratic
sub-manifold J (V) defined by the Jacobi law, which is quadratic in x, in the tensor space
V ⊗ [V†⊗V†]; here the † dualizes, the brackets skew-symmetrize, and J (V) imports its topology
from the surrounding tensor space V ⊗ [V† ⊗ V†].

Now the key definition: A regular (stable, robust, generic, . . . ) Lie algebra is one whose
structure tensor or Lie product x is isomorphic to all those in some neighborhood N(x) ⊂ J (V).

A Lie algebra is regular if and only if its Killing form is regular [23].
Thus the Lorentz group of space-time transformations is stable. For example, small correc-

tions to light-speed c do not change the structure of this group.

3



By group flexing we mean a homotopy of the structure tensor of a compound group that
makes it semi-simple. Group flattening is the inverse process. The well-known contraction
process of Inönü and Wigner [18] is a special case of flattening accomplished by a one-parameter
group of dilations of a coordinate system of the Lie algebra in a fixed direction. The inverse to
group contraction is group expansion [17] and is a special case of flexing.

Several regularization processes have been used to remove unwanted infinities from physics.
Unphysical regularizations seek to cope with the divergencies of a theory without changing the
finite results. They are regarded as giving the theory meaning rather than changing the theory.
These include Pauli-Villars regularization [22], lattice regularization (lattice gauge theory) [28]
and dimensional regularization [6, 7, 26]. They contain regularization parameters that go to
singular limits, such as lattice spacings that go to 0. Physical regularizations, on the contrary,
are new physical theories in their own right. They change the finite predictions as well as making
the infinite ones finite. Their regularization parameters do not go to a singular limit but must
be determined by experiment. The most famous example is Planck’s, which ultimately led to
quantum theory. Heisenberg’s regularization left the Killing form of the (q, p) Lie algebra 0. To
eliminate this 0 takes two new quantum constants.

The group regularization we carry out here is proposed as a toy model of a physical regular-
ization.

Compound groups are unstable with respect to a small change in their structures [23]. Flexing
stabilizes them. Conversely, flattening destabilizes. Approximating a circle by a tangent line
or a sphere by a tangent plane are well-known flattenings. The circle and sphere are finite and
their flattened form is infinite. Finite dimensional representations of the group of the sphere
— such as spherical harmonic polynomials — form a complete set on the sphere, and all the
operators of an irreducible representation have finite bounded spectra. On the other hand the
tangent plane is not compact and requires infinite-dimensional representations of the translation
group for a complete set, and its group generators have unbounded spectra.

3 Simplifying the Heisenberg Algebra

The Heisenberg Lie algebra H1 is defined by the commutation relations

p x q = −i~1, 1 x q = 0, q x 1 = 0. (1)

among its three generators q, p, 1. It is compound and solvable, its own radical. Segal proposed
to simplify H1 by replacing 1 with a variable o similar to q and p, with two more quantum
constants, which we designate here by ~′ ≡ ~[1] and ~′′ ≡ ~[2], and flexed commutation relations,
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notation changed,
q̂ x p̂ = ~ir̂, r̂ x q̂ = ~′ip̂, r̂ x p̂ = −~′′iq̂, (2)

[8, 27, 23] These define the group SO(2, 1). The irreducible unitary representations of this
non-compact group are infinite-dimensional. Ultimately we will need an indefinite metric for
relativistic reasons, but not for the time-independent harmonic oscillator. To avoid these infini-
ties, we change one sign. Let q ≡ q[0], p ≡ q′ ≡ q[1], o ≡ q′′ ≡ q[2]. We assume an invariant
Euclidean metric gij and use the regularization [4, 16]

q̂[i] x q̂[j] = −i
∑

k

εijk~[k]q̂[k]. (3)

We take ~, ~′, ~′′ > 0 so that the orthogonal group is SO(3). Quantities with a circumflex like q̂
are the flexed quantum operators.

Group regularization generally creates the same kind of factor-ordering problems that quan-
tization did.

Except for scale factors the simplified commutation relations are those of an SO(3) quantum
angular-momentum operator-valued vector L = iL xL for a dipole rotator in three-dimensional
space. We assume an irreducible representation with

L2 = l(l + 1) (4)

where l can have any non-negative half-integer eigenvalue. (In the present work it suffices to
consider only integer values of l.) Then L1, L2, L3 are represented by (2l+1)× (2l+1) matrices
obeying

Li xLj = −iεijkLi. (5)

We fix the scale factors by setting

q[k] = Q[k]L[k] (No sum over k.) (6)

In the singular limit l→∞ and the oscillator is nearly polarized along the L3 axis, with L3 ≈ l.
By (5)

Q =
√

~~′, Q′ =
√

~~′′, Q” =
√

~′~′′ = 1/l. (7)

The commutation relations (5) and the angular momentum quantum number l determine a
simple (associative) enveloping algebra Alg(L, l) The spectral spacing of L3 is 1, so the finite
quantum constants Q,Q′, Q” serve as quanta of the position, momentum and action variables.
Since q, p are supposed to have continuous spectra in quantum theory, the constants Q, ,Q′ must
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be very small on the ordinary quantum scale. It follows that Q” = QQ′/~ is also very small on
that scale and l� 1.

For l �
√
l � 1, variations δ(o2) ≤ O(l−1/2) � 1 about o2 = 1 can be negligible at the

same time as the spectral intervals δp ≤ Q′
√
l and δq ≤ Q

√
l for quasicontinuous p, q ≈ 0. This

simulates the usual oscillator.

4 Stationary harmonic oscillator

In this section we regularize the time-independent linear harmonic oscillator (§4), with quan-
tum coordinate q and momentum p, and in a later section the time-dependent one (§5), with
additional differential operators t and ∂t.

A familiar ordering question arises at once. Since group regularization introduces non-
commutativity, the factor-ordering of some products is immaterial in the unregularized theory
but is significant in the regularized theory. Re-ordering the singular theory will introduce a
correction of order h′h′′ that may be experimentally significant. This makes the group regular-
ization process as notation-dependent and ambiguous as the canonical quantization process.

Here there is no dynamical law for us to flex, just the canonical commutation relations,
the Hamiltonian operator H, and the ground state. We regularize the Heisenberg group H(1),
generated by the Lie algebra of q, p, 1, and the unitary group U(∞) of the associative algebra
generated by q, p and the canonical commutation relation. We ignore time as much as possible.

We specialize to the finite harmonic oscillator by fixing the Hamiltonian

H =
Q′2

2m
L2

2 +
kQ2

2
L2

1 =:
K

2
(
L2

2 + κ2L1
2
)

(8)

where

K :=
(Q′)2

m
, κ2 =

~′mk
~′′

. (9)

We may think of κ as a dimensionless oscillator freqency. For fixed ~[k], all finite oscillators
are divided into three kinds with ill defined boundaries: medium, where kinetic and potential
terms in H are of comparable size (κ ∼ 1); soft , with κ → 0); and hard , with κ → ∞. For
a spin-zero scalar field in the singular quantum field theory, the oscillators that give rise to
infrared divergencies become soft oscillators in the finite quantum theory, and those that feed
ultraviolet divergencies become hard oscillators.
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4.1 Medium oscillators

The case κ = 1 is symmetric under rotations about the z axis, and so is especially simple [26].
Since

(L1)2 + (L2)2 + (L3)2 = (L2), (10)

it follows that
H =

K

2
(
l(l + 1)− (L3)2

)
(11)

The oscillator quantum number n that labels the energy level is now

n = l +m. (12)

The expanded energy spectrum is

En =
K

2
(
l(l + 1)− (n− l)2

)
= lK

(
n+

1
2
− n2

2l

)
(13)

For n�
√
l� l this reproduces the usual uniformly-spaced oscillator energy spectrum as closely

as desired, but with multiplicity 2 for each level instead of 1.
The ground-state energy for this oscillator is

E0 =
1
2
Kl =

1
2
1/2~ω, (14)

exactly the usual oscillator ground energy, since Kl = ~ω.
The main new feature is that this finite oscillator has an upper energy limit

Emax =
1
2
Kl(l + 1) (15)

as required by a finite quantum theory.
In the general case of κ ∼ 1 we obtain an upper bound for the ground energy by a variational

approximation with the trial function |L3 = ±l〉. This reproduces our previous result (14), now
as an upper bound for the ground energy of a medium FLHO:

E0 ≤
1
2
Kl. (16)

Medium oscillators have many states with m-value close to the extremum values m = ±l. The
usual Heisenberg uncertainty principle

(∆p)2(∆q)2 >
1
4
〈ip x q〉2 =

~2

4
. (17)
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becomes

(∆L1)2(∆L2)2 >
~2

4
〈L3〉2|L3≈±l〉 (18)

for a low-lying energy level of a medium oscillator. By (6) and (7),

(∆p)2(∆q)2 >
~2

4
(19)

for large l. So medium oscillators in low-lying energy levels have uncertainties obeying the
Heisenberg uncertainty principle.

4.2 Soft oscillators

When κ� 1 we can estimate the spectrum of the finite Hamiltonian (8) by perturbation theory.
The unperturbed Hamiltonian is now the kinetic energy

H0 =
K

2
L2

1 (20)

and the unperturbed eigenvectors are |L1 = m〉 so the unperturbed energy levels are

Em(0) =
K

2
m2. (21)

The first-order shifts are
δEm =

K

2
〈L1 = m|L2

2|L1 = m〉. (22)

Due to the axial symmetry of |L1 = m〉,

〈L1 = m|L2
2|L1 = m〉 = 〈L1 = m|L2

3|L1 = m〉. (23)

Therefore the energy shift is, to lowest order in κ2,

K

2
〈L1 = m|κ2L2

2|L1 = m〉 =
K

4
κ2〈m|L2

1 + L2
2|m〉

=
K

4
κ2〈m|L2 − L2

3|m〉

=
K

4
κ2l(l + 1)−m2 (24)
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The new energy spectrum is then

Em ≈ K

2
m2 + ∆Em

=
K

2
m2 +

1
4
K κ2

[
l(l + 1)−m2

]
(25)

The estimated upper bound for the energy is

Emax ≈
1
2
Kl2(1 +

κ2

2l
) (26)

For κ → 0 this reproduces the upper bound for the unperturbed Hamiltonian L2
3, as it

should. The zero-point energy E0 of first-order perturbation theory is

E0 ≈
1
4
κ2Kl(l + 1) (27)

For κ→ 0 this is infinitesimal compared to the usual singular quantum oscillator.
A soft oscillator shows no resemblance to the usual quantum oscillator. Its energy levels

do not have uniform spacing. Its kinetic energy dwarfs its potential energy, so equipartition is
grossly violated. The low energy states are near |L1 = 0〉 instead of |L3 = ±l〉. Its p degree of
freedom is frozen out. It is “too soft to oscillate:” There is not enough energy in the q degree
of freedom, even at its maximum excitation, to produce one quantum of p. The uncertainty
relation reads

(∆L1)2(∆L2)2 >
~2

4
〈L3〉2|L1≈0〉 ≈ 0 (28)

Therefore
∆p∆q � ~

2
, (29)

which violates the Heisenberg uncertainty principle grossly.

4.3 Hard oscillators

Hard oscillators reverse the story but violate the same basic principles of the singular quantum
theory as soft oscillators. A hard oscillator has much greater potential than kinetic energy. Its
low energy states are now near |L2 = 0〉 instead of |L3 = ±l〉 (the medium case) or |L1 = 0〉 (the
soft case). There is not enough energy in the p degree of freedom, even at maximum excitation,
to excite one quantum of q. Its q degree of freedom is frozen out. It is “too hard to oscillate.”

9



A hard oscillator too can be treated by perturbation theory. Now the kinetic energy is the
perturbation. We may carry all the of the main results in the previous section for soft oscillators
to the hard ones simply by replacing κ with 1/κ and K with Kκ2. A hard oscillator shows no
resemblance to the usual quantum oscillator. Its zero-point energy E0 is now

E0 ≈
K

4
l(l + 1) (30)

For κ → ∞ this is infinitesimal compared to the usual quantum oscillator zero-point energy.
The energy levels of a hard oscillator are not uniformly spaced. Its uncertainty relation reads

(∆L1)2(∆L2)2 >
~2

4
〈L3〉2|L2≈0〉 ≈ 0 (31)

Therefore
∆p∆q � ~

2
, (32)

which seriously violates the Heisenberg uncertainty principle again.

4.4 Unitary Representations

Variables p and q do not have finite-dimensional unitary representations in classical and quantum
physics. They are continuous variables and generate unbounded translations of each other. But
since in the finite quantum theory, all operators become finite and quantized, we expect all
translations to become rotations with simple finite-dimensional unitary representations.

The canonical group of a classical oscillator becomes the unitary group of an infinite-
dimensional Hilbert space for a quantum oscillator, and the unitary group of a 2l+1 dimensional
Hilbert space for the finite oscillator.

The Lie algebra generated by momentum and position as infinitesimal symmetry generators
is H(1) for the classical and quantum oscillator and the SO(3) angular momentum algebra
for the finite oscillator. The corresponding Lie groups are the Heisenberg group H(1) and the
orthogonal group SO(3).

The commutation relations L xL = −iL and the angular momentum quantum number l
determine a simple matrix algebra Alg(L, l); here l can be any non-negative half-integer. The
spectral spacing of the operators Lk is 1, so the constants ~k serve as quanta of the q̂k respec-
tively. Since q, p have continuous spectra in the flattened quantum theory, the quanta ~1, ~2 of
the flexed operators q̂, p̂ must be small on the ordinary quantum scale ~ ∼ 1. It follows that ~3

is also small on that scale.
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For
√
l� 1, variations δ(r̂2) ≤ O(l−1/2) � 1 from r̂2 = 1 can be negligible at the same time

as the spectral intervals δp ≤ ~2

√
l and δq ≤ ~1

√
l for quasicontinuous p� ~2, q � ~1.

4.5 Quantum internal space

It is natural to ask what space the oscillator moves in. In c physics we usually describe a
space as a set of space-points with some structure. But in quantum theory we describe a
space by its algebra of coordinates, contragredient to the usual notion. The coordinate space of
the q oscillator is defined in the quantum sense by the complex commutative algebra Alg[q,C]
generated by the coordinate operator q. The phase space of the same q oscillator is defined by
the complex non-commutative Heisenberg algebra H(1) = Alg[q, p,C]. Both algebras are infinite
dimensional. We say nevertheless that the oscillator coordinate space is 1-dimensional, because
its algebra is generated by the one operator q, with spectrum R. The q oscillator phase-space
can still be called 2-dimensional because its algebra has two independent generators q, p, each
with spectrum R.

In the finite quantum oscillator theory, where ~i ∈ C has been replaced by ~ir̂, we naturally
define the corresponding quantum phase-space by the complex algebra Alg[q̂, p̂, r̂] = lg SO(3) .
This slight change in the commutation relations changes the spaces drastically in the large. The
three variables L1, L2, L3 are on the same footing, and are related to the constant total quantum
number l by (L1)2 + (L2)2 + (L3)2 = l(l + 1).

The Hamiltonian (8) is that of a rigid dipole rotator with one infinite principle moment of
inertia I3 = ∞ and with a sharp total angular momentum quantum number l < ∞. It has a
finite number of states N = 2l + 1 ∼ 1/(~′~′′). Manfredi and Salasnich discuss the statistics of
the energy spectrum of the triaxial rotator and point out that part of the rotator spectrum can
approximate the spectrum of a linear harmonic oscillator [21].

Obviously the operator ~ω(L12+ l)) has exactly the energy spectrum of the singular theory,
cut off at the Nth level. There is presumably a modification of Ĥ ′ of Ĥ that has exactly
this equally spaced spectrum and differs from our quadratic Ĥ by corrections that vanish in
the singular limit. This equally spaced energy spectrum eliminates the interactions between
the quanta of excitation when their number is less than N , while the impossibility of higher
occupation than N can be regarded as an effective infinite repulsive N + 1-body potential.

4.6 Comparison of regular and singular quantum oscillators

Let us compare the classical, quantum, and finite linear harmonic oscillators [24].
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Every finite quantum oscillator is isomorphic to a dipole rotator with Hamiltonian of the
special form

H =
1
2
Kx(Lx)2 +Ky

1
2
(Ly)2, Kx =

P2

µ
, Ky =

Q2

λ
. (33)

The singular classical and quantum oscillators have continuous coordinates q and momenta p.
The finite-oscillator position and momentum variables q̂, p̂ are quantized with finite, uniformly
spaced, spectra, with spacing Q,P respectively, and maximum values lQ, lP. Systems presently
recognized as oscillators have many states, N = 1/J � 1 in number. Oscillators with N ∼ 1 are
not recognized today as oscillators but are recognized as rotators at once.

In the classical theory all oscillators are isomorphic up to scale. All singular quantum linear
harmonic oscillators are likewise isomorphic up to scale. The constants ~, ~′′ finally break this
scale invariance. The finite quantum linear harmonic oscillators fall into three broad classes,
which we term soft , medium, and hard, according to the dimensionless ratio Ky/Kx = κ2 of
maximum possible potential energy to maximum possible kinetic energy.

Medium oscillators (κ ∼ 1 ) have ∼
√
N low-lying states with nearly the same zero-point

energy and level spacing as the singular quantum oscillator, like rotators nearly polarized along
the z axis with Lz ∼ ±l. They resemble the singular quantum oscillator in that they obey the
Heisenberg uncertainty principle and the equipartition principle when they are in their low-lying
energy levels.

The soft and hard finite oscillators do not resemble the singular quantum oscillator at all.
Their low-lying energy states correspond to rotators with κ ∼ 0 or κ ∼ ∞. Their 0-point energy
is infinitesimal compared to the singular quantum oscillator. They grossly violate both the
uncertainty principle and equipartition in all their states.

Soft oscillators have frozen momentum p ∼ 0, their maximum potential energy being too
small for even one quantum of momentum.

Hard oscillators (kinetic � potential) have frozen position q ∼ 0, their maximum kinetic
energy being too small for even one quantum of position. These quantum freezings of degrees
of freedom resemble but extend the original ones by which Planck obtained a finite thermal
distribution of cavity radiation. Even the 0-point energy of a similarly regularized field theory
will be finite, and can therefore be physical.

Straightforward regularization of the singular harmonic oscillator results in the energy-
constraint operator

Ê − Ĥ = AL14 −BL2
23 − CL2

24 (34)

with real positive constants A,B,C. For medium oscillators this approaches the singular theory
as ~rp, ~rq → 0. For soft oscillators the mass dominates the spring, C � B and may be
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treated as a perturbation. The kinetic energy perturbation CL2
24 happens to commute with the

unperturbed energies AL14 −BL2
23.

5 Dynamical harmonic oscillator

Having regularized the stationary or time-independent quantum oscillator, a theory with no
dynamics, we now regularize the dynamical or time-dependent one, staying as close to the
singular theory as regularity permits. Above all we maintain and extend the correspondence
principle. The variables and equations of the flexed theory converge (non-uniformly) to those
of the singular theory in the quantum limit.

This is a critical test of the strategy of group regularization. We have not succeeded in
making a reasonable dynamical theory of a q/q system before now.

As a preliminary to regularization by simplification we reformulate the singular time-dependent
theory algebraically.

5.1 Timed operators

In ordinary usage, each element of the system (associative) algebra (S) represents an entire
equivalence class of physical acts of determination possibly at different times equivalent by
virtue of the dynamics. One observable can be measured at any time by suitable timed actions
if a definite Hamiltonian is operative. For brevity we speak of operator-valued functions of time
as timed operators, and speak of what they represent as timed variables and timed actions on
the system. The timed operators form an algebra A(S, T ) that we construct as follows. Let
T designate the real field R as affine time axis. The commutative algebra of power series in
the time variable t ∈ T we designate by A(T ). Then the algebra of timed operators of the
Heisenberg quantum theory is A(S, T ) = A(S) ⊗ A(T ). Since both factor algebras are unital,
they are sub-algebras of their product.

The time coordinate itself is not an observable in the operator algebra A(S) but a timed
operator in A(S, T ). The operator d/dt of the Heisenberg dynamics is not even a timed operator
but an operator on timed operators: d/dt : A(S, T ) → A(S, T ). In the Heisenberg equation
(35), both the variable q(t) and the Hamiltonian operator H are timed operators in A(S, T ).

The Heisenberg dynamical equations

i~
dq(t)
dt

−H x q(t) = [E −H] x q(t) = 0. (35)
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concern timed operators q(t), not mere operators or observables q. We designate byA(S, T ;H) ⊂
A(S) ⊗ A(T ) the dynamical algebra, consisting of timed operators q obeying the Heisenberg
equation with the specified Hamiltonian H, and call its timed operators dynamical variables
or operators. The commutation relations q1(t1) x q2(t2) = q3(t1, t2) of dynamical variables at
different times depend on the Hamiltonian.

To stabilize the dynamical theory we flex and stabilize the timed algebra A(S)⊗A(T ) and
the dynamical equations in turn.

To designate for the Lie algebras generated for example by the same basic variables q, p as
A(S) with the commutator as Lie product, we replace A(S) by L(S). The much bigger Lie
algebra that is the commutator algebra of an associative algebra A(S) we designate by LA(S).

5.2 Flexing the timed algebra

We flex the time space T following the precedent of the system space S. To regularize the Killing
form of A(T ) most economically we first adjoin the operator d/dt, forming an interim Heisenberg
algebra that we regard as defining a quantum time space S(t, E) with non-commutative time-
energy operators t and E := i~d/dt generating a Lie algebra L(t,−E) ∼ lgH(1). Now the
partial time derivative of any timed operator V ∈ A(S)⊗A(t, E) is ∂tV = d/dt xV .

A notational reminder: The timed energy operator E := i~∂t ∈ A(t, E) ⊂ A(S)⊗A(t, E) is
mathematically distinct from the Hamiltonian H ∈ A(S) ⊂ A(S)⊗A(t, E).

When we combine two independent physical systems S1,S2 into one composite system S =
§1§2, the Lie algebra L = L1 ⊕ L2 of the composite is a commutative direct sum of the two
partial Lie algebras L1,L2. That is, the composite vector space is a direct sum V = V1 ⊕ V2,
and S1 operators act on the subspace V1 and commute with S2 operators acting on the subspace
V2. The associative operators algebras combine by the tensor product: A = A1 ⊗A2.

In the example of the linear harmonic oscillator, we form the commutative direct sum of
the Heisenberg kinematical Lie algebra L(q, p) of a time-independent oscillator theory with a
Heisenberg time-energy Lie algebra L(t,−E) to form the timed Lie algebra L(S) ⊕ L(t,−E)
of the time-dependent theory of a singular time-dependent oscillator. The kinematical timed
algebras are then tensor-multiplied:

A(S, t,−E = A(S)⊗A(t,−E). (36)

The Heisenberg dynamical equation now takes the form

4(E −H) · V = 0. (37)
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We designate the dynamical sub-algebra of A(S, T ) by A(S, T : E −H). It is the centralizer
of E −H in the timed algebra A(S)⊗A(t, E). It depends on the Hamiltonian.

In the time-independent theory we flexed the canonical pair (q, p) to a canonical triplet
(q̂, p̂, r̂), replacing the singular quantum space S of Heisenberg quantum theory by a finite
quantum system space Ŝ. We now do the same for the canonical pair (t,−E). For ~ universality
we take the action operator of time space to be identical with the action operator ĥ = ~r̂ of
system space. We write L̂ := L(q̂, p̂, t̂, Ê) for the simple Lie algebra generated by the four flexed
variables q̂, p̂, t̂, Ê subject to flexed commutation relations developed next.

The common action variable ĥ = q̂ x p̂ = Ê x t̂ already couples the coordinate and momentum
variables and couples the time and energy variables. The least orthogonal Lie algebra lg SO(n)
that includes the sub-algebras L(q̂, p̂) and L(t̂, Ê) is apparently L(q, p, t, E) ∼ lg SO(2+ σ

2 , 2−
σ
2 )

for suitable signature σ. We must therefore include a boost b̂ ∼ q̂ x t̂ ∼ p̂ x Ê ∈ L(q̂, p̂, t̂, Ê) that
couples the coordinate and time variables, and also couples the momentum and energy variables.
By suitable conventions we shall associate the six operators q̂, p̂, t̂, Ê, r̂, b̂ with multiples of the
six infinitesimal generators Lij = −Lji of SO(3, 1) with metric tensor

g = −11 ⊗ 11 + 12 ⊗ 12 + 13 ⊗ 13 + 14 ⊗ 14 (38)

and commutation relations

Lij xLkl =
1
2
[Likgjl − Lilgjk − Ljkgil + Ljlgik]. (39)

Up to sign, each of these commutation relations has one of the three typical forms

L13 xL13 = 0,
L13 xL14 = L34,
L24 xL13 = 0 (40)

depending on whether the two index pairs {i, j} and {k, l} agree in 2, 1 or 0 indices. Let us
arbitrarily identify the 1 and 2 axes as respectively time-like and space-like, and the 3 and 4
axes as respectively coordinate-like and momentum-like. We introduce quantum constants ~jk

as scale factors and relabel the six infinitesimal generators q̂, p̂, t̂, Ê, b̂, r̂ as q̂ij according to

b̂ = q̂12 := ~12L12, q̂ = q̂23 := ~23L23,

p̂ = q̂24 := ~24L24, t̂ = q̂13 := ~13L13,

Ê = q̂14 := ~14L14, r̂ = q̂34 := ~34L34.

(41)
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Thus the constant ~jk is the quantum of the variable qjk. In particular we write ~13 =: T for
the time quantum or chronon and ~14 =: E for the energy quantum or ergon. This leads to 15
kinematic commutation relations

q̂ x p̂ = +~ir̂, r̂ x q̂ = +~rqip̂, p̂ x r̂ = +~priq̂, t̂ x Ê = −~ir̂,
r̂ x t̂ = −~rtiÊ, q̂ x t̂ = +~qtîb, Ê x r̂ = −~Erit̂, Ê x q̂ = 0,
Ê x p̂ = +~Epîb, b̂ x Ê = +~bEip̂, b̂ x p̂ = +~bpiÊ, b̂ x q̂ = +~bqit̂,

b̂ x t̂ = +~btiq̂, q̂ x Ê = 0, p̂ x t̂ = 0
(42)

with corresponding quantum constants [MORE to be checked and fixed!]

~ = ~23~24/~34 = ~13~14/~34, ~rq = ~23~34/~24 = ~14~34/~13,
~pr = ~24~34/~23, ~Ep = ~13~23/~12 = ~14~24/~12,
~bE = ~12~14/~24 = ~12~13/~23, ~bp = ~12~24/~14,
~bq = ~12~23/~13,

(43)

The relations (42) uniquely define a Lie algebra L(Ŝ, T̂ ) = lg SO(2 + σ
2 , 2−

σ
2 ) with associated

dimension 4 and signature σ, but not a representation of that algebra. By Schur’s Lemma, we
single out an irreducible representation by fixing the values, for example, of the independent
invariants Tr L2,Tr L3,Tr L4, where L is the matrix (Lj

k) of matrices, the powers shown are
matrix powers, and the trace Tr is a diagonal sum over the external indices j = k enumerating
these matrices, and not over the internal indices enumerating their matrix elements.

The variables q̂23 ∼ q̂, q̂24 ∼ Ê form a maximal commuting set among the flexed generators
q̂ij . We may therefore represent these operators on wave-functions of the form ψ(q̂, Ê). Similarly
ψ(p̂, t̂) is a permissible representation. Since t and q do not commute, we cannot assume flexed
oscillator wave-functions of the form ψ(q̂, t̂); nor of the form ψ(p̂, Ê).

In the singular limit the Heisenberg equation with time-independent Hamiltonian is invariant
under time translation t → t + ∆t and its infinitesimal generator E. There is no possibility of
time-translation invariance in a regular theory since the spectrum of time is bounded, |t| ≤
N~ < ∞. The eigenspaces for different values of t even have different dimensionalities. In the
vicinity of t = 0 this variation with t is slow, and it disappears in the singular limit. These are
the middle times of the theory.

We can however, when appropriate, require invariance under Ê. We take Ê-invariance to
be the finite correspondent of the singular quantum E-invariance. In the singular quantum
limit r̂ → 1 and Ê-invariance indeed approaches the usual time-translation invariance, though
non-uniformly.
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5.3 Flexing the commutation relations

In the singular theory dynamical operators at different times have commutators that are defined
by equal-time commutators and the dynamical development. The finite correspondent of the
singular equal-time algebra is here A(S). We are to construct the finite correspondent of the
singular dynamical development U = exp(−iHt/~).

The finite dynamical development respects the equal time commutation relations in the finite
quantum theory when the finite Hamiltonian is invariant under Ê and t̂.

Proof: The proof in the finite theory parallels the proof in the singular limit. In the singu-
lar quantum theory the development respects the equal time commutation relations when the
Hamiltonian is invariant under E, t invariance being tautologous (t is central). In the finite the-
ory, 4Ê = 4Ĥ on the dynamical algebra. When Ĥ commutes with t̂ and Ê, it also commutes
with all of A(T ). Then Ĥ induces an automorphism of A(S), and one of A(S) ⊗ A(T ) that
leaves the coordinates in A(T ) invariant.

5.4 Flexing the dynamics

The finite dynamical equation found by flexing (35) is

[Ê − Ĥ] x q =: 4(Ê − Ĥ) · q = 0. (44)

This resembles familiar dynamical equations if Ĥ commutes with quantum time t̂ ∼ q̂13 [by
(41)] as the singular H commutes with singular time t. Ĥ may contain any power of the
variable p̂ ∼ q̂24, including p2, corresponding to the kinetic energy of the usual oscillator, and
still commute with t̂. The quadratic term q̂2 ∼ (q̂23)2 corresponding to the potential energy
of the usual oscillator is forbidden by t̂- invariance, however, unless it is accompanied by a
compensating term b̂2 ∼ (q̂12)2 with the same scalar coefficient. Since the boost vanishes in the
singular quantum limit this extra Hamiltonian term does not grossly violate experiment and
may have experimental consequences.

In any case the finite dynamical equation (44) does not have the orthogonal symmetry
SO(2+ ω

2 , 2−
ω
2 ) of the dynamical algebra. There exists a simple dynamics with this symmetry,

for example that based on a quadratic Casimir operator

Q := CLµνLµν (45)

with dynamical equation
4Q · V := C4(LµνLµν) · V = o (46)
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6 Conclusion

We suggest that all the infinities of present physics result from one or another flattening. Since
quantum theory began as a regularization procedure of Planck, it is rather widely accepted that
further regularization of present quantum physics calls for further quantization, but what to
quantize and how to quantize it remains at least a bit unclear. If we regard quantization as a
special case of group regularization, a path becomes clearer. It is marked by radicals ripe for
annihilation. Group regularization of the linear harmonic oscillator results in a finite quantum
theory with three quantum constants ~, ~′, ~′′ instead of the usual one. The stationary finite
quantum oscillator is algebraically isomorphic to a dipole rotator with N = l(l+1) ∼ 1/(~′~′′) �
1 states and bounded Hamiltonian H = A(L1)2 +B(L2)2. Its position and momentum variables
are quantized with uniformly spaced bounded finite spectra and supposedly universal quanta of
position and momentum. For fixed quantum constants and large N � 1 there are three broad
classes of finite oscillator, soft, medium, and hard. The field oscillators responsible for infra-red
and ultraviolet divergences are soft and hard respectively. Medium oscillators have ∼

√
N low-

lying states having nearly the same zero-point energy and level spacing as the quantum oscillator
and nearly obeying the Heisenberg uncertainty principle and the equipartition principle. The
corresponding rotators are nearly polarized along the z axis with L3 ∼ ±l.

The soft and hard oscillators have infinitesimal 0-point energy, and grossly violate both
equipartition and the Heisenberg uncertainty relation. They do not resemble the quantum
oscillator at all. Their low-lying energy states correspond to rotators with L1 ∼ 0 or L2 ∼ 0
instead of L3 ∼ ±l. Soft oscillators have frozen momentum p̂ ≈ 0 because their maximum
potential energy is too small to excite one quantum of kinetic energy. Hard oscillators have
frozen position q̂ ≈ 0 because their maximum kinetic energy is too small to excite one quantum
of potential energy.

The finite quantum theory affects cosmology. The zero-point energy of a physical oscillator
presumably contributes to its gravitational field. It will be interesting to estimate the zero-point
contribution to astronomical gravitational fields. For a consistent estimate we must regularize
the space-time operators xµ, ∂µ as well as the canonical field variables q, p, since both algebras
have the same instability. This changes not only the structure of the individual oscillators, as
considered here, but also the number and distribution of the oscillators. We take a crucial first
step in this direction by quantizing time and energy in this note, and leave the next step for
further study.

The finite quantum theory modifies low- and high-energy physics. Because the low-lying
energy levels of medium oscillators have nearly uniform spacing, the energy of two excitations
is but slightly less than the sum of their separate energies. The corresponding quanta nearly do
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not interact, and the small interaction that they have is attractive. For soft or hard oscillators,
the energy level varies quadratically with the energy quantum number. The energy of two
quanta of oscillation is twice the sum of their separate energies, for example. The corresponding
quanta have a repulsive interaction of great strength; the interaction energy is equal to the total
energy of the separate quanta. Thus the simplest regularization leads to interactions between the
previously uncoupled excitation quanta of the oscillator, weakly attractive for medium quanta,
strongly repulsive for soft or hard quanta.

Like Dirac’s theory of the “anomalous” magnetic moment of the relativistic electron, these
extreme-energy effects depend on factor ordering. They can be adjusted to fit the data by re-
ordering factors and so are not crucial tests of the theory. The theory of a more physical system
will be necessary for that.
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