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Abstract

Understanding the genetic regulatory network comprising genes, RNA, proteins and the net-
work connections and dynamical control rules among them, is a major task of contemporary
systems biology. I focus here on the use of the ensemble approach to /nd one or more
well-de/ned ensembles of model networks whose statistical features match those of real cells
and organisms. Such ensembles should help to explain and predict features of real cells and
organisms.
c© 2004 Published by Elsevier B.V.

1. Introduction

We have entered the post-genomic era. We know most of the genes, the coding
regions, some of the cis regulatory sites and transcription factors, some of the protein
components of cell-signaling cascades that are driven by transcription and translation,
and in turn feed back to regulate gene activities. Let me refer to this whole system
as the genetic regulatory network. One of the outstanding problems of contemporary
systems biology is to understand the structure, logic and dynamics of this network
within and between cells.
In this task, there are at least three theoretical approaches, each with advantages

and disadvantages. The /rst builds detailed kinetic models of small isolated genetic
circuits [1,2]. The virtue of this approach is that detailed comparison with experi-
ments is possible. The disadvantage is that if one took 10 genes from a human genetic
network and tried to build a detailed model of that sub-circuit, it would almost cer-
tainly be impacted by other genes from outside the sub-circuit, so detailed modeling
would not capture all the dynamics. The second approach I will call solving the “in-
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verse problem”. Using gene expression arrays, proteome arrays, and so forth, you show
me the patterns of genes turning on and o%, or proteins increasing and decreasing in
abundance, and I deduce and tell you the circuitry and “logic” driving this dynami-
cal behavior. The advantages of this approach include the fact that one is trying to
deduce the actual circuitry and logic of the real network, or parts of it. The disad-
vantages include the fact that the data is noisy, that the inverse problem has, so far,
met with limited success to my knowledge [3], and will typically lead at best to a
family of candidate networks. The inverse approach will undoubtedly be an area of
intense focus in the coming years. The third approach will be termed the “ensemble
approach”.
I will focus in this article on the ensemble approach. The /rst attempt [4], was

the introduction of random Boolean networks, where a gene is modeled as if it were
an on-o% device, the network has N genes, each with K inputs, and time is updated
synchronously by a central clock (surely not characteristics of real cells). This work
has been taken up and extended by many workers [5–10].
At least three initial ensembles of Boolean networks, distinguished by their “wiring”

diagrams, are now available: (1) Classical random Boolean nets where each of N genes
receives the same number, K , inputs, randomly chosen among the N . (2) Scale-free
networks in which there is a power-law distribution of inputs or outputs or both from
the genes [11,12]. (3) “Medusa networks” in which a small “regulatory head” contains
a network among transcription factors that regulate one another, and an acyclic-directed
graph hanging o% that head which contains genes that are regulated but not regulating.
The sparse data available tend to support either a scale free network [11], in E. coli, or
a medusa network wiring diagram in yeast [13]. In addition to these structural classes,
di%erent biases in the classes of Boolean functions can be introduced, particularly
including canalyzing and high P functions [5,14], and certain Post classes [15]. Beyond
Boolean nets, one can consider:

(1) Discrete S state networks that remain synchronous [16].
(2) Boolean or S state networks that are randomly asynchronous.
(3) Probabilistic Boolean nets where each gene is governed by a small set of Boolean

functions given by best /ts to data, and which rule governs each gene is chosen
randomly from the small set at each moment [17].

(4) Boolean nets in which genes have a distribution of time scales.
(5) Networks of piecewise linear equations [18].
(6) Networks with continuous Hill functions [19].
(7) Networks with more detailed and realistic equations representing both RNA and

protein synthesis [20].
(8) Networks governed by stochastic equations of motion.

Clearly, the ensemble approach can include a wide variety of model genetic
networks.
I comment that medusa networks are of interest in that evolution can add new genes

to the acyclic graph of genes that are regulated by the head, but play no regulatory
role, without altering the attractors of the regulatory head. Since attractors emerge as
model cell types, this may be of importance.
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2. Classical random Boolean networks

A classical random Boolean network has N genes, each receiving K randomly chosen
inputs per gene. Each gene is assigned at random one of the possible Boolean functions
on K inputs. Random construction samples at random from the enormous ensemble of
all NK Boolean networks, hence allows assessment of the distributions of properties
of interest.
Each combination of gene activities, 1 or 0, across the N genes constitutes a state

of the network. Hence there are 2 to the N th power states. Start the network in an
initial state. Each gene examines the activities of its K inputs, consults its Boolean
function, and assumes the proper next state of activity at the next clocked moment.
Thus, the network progresses from a state to a state at each clocked moment. Over a
succession of moments, the system traces out a trajectory in its state space. Since the
number of states is /nite, eventually, the system reenters a state previously encoun-
tered on the trajectory. Since the system is deterministic, it thereafter cycles repeat-
edly around a loop of states called a state cycle attractor. It is a trivial property of
such networks that they have at least one state cycle. The rest of the properties are
highly non-trivial.
Work since the introduction of random Boolean networks has revealed that such

networks behave in two broad regimes, ordered and chaotic, with a critical phase
transition separating the two regimes. It is useful to visualize an hypothetical movie to
characterize the two regimes. Start a network in an initial state. If a gene is turning on
and o%, color it green. It is “going”. If a gene stops changing and is locked in the on
or o% state, color it red, it is “frozen”. In the ordered regime, as the movie starts, all
genes are green. Soon, more and more turn red, until a connected red sub-network of
the genes spans, or percolates across the network, leaving behind green islands whose
genes twinkle on and o%. In the chaotic regime the results of the movie are just the
opposite. A green twinkling sea spans or percolates across the system leaving behind
red frozen islands.
As parameters, such as K , or biases on the Boolean functions such as canalyzing and

P [5,14], are tuned, the networks can pass through the phase transition. That transition
occurs just as the green sea is breaking into green islands [5]. Thus, it is now known
that K = 2 networks are exactly critical, K = 1 networks lie in the ordered regime,
while K = 3 or higher networks lie in the chaotic regime [6].

3. New biological observables predicted by ensembles

It is important to emphasize that the properties I will describe are new biologi-
cal observables that are currently largely measurable, that they probe the integrated
behaviors of networks, but not the typical aspects of genetic networks upon which
biologists have focused. Space does not permit discussion of experimental approaches
to measuring these properties [21].
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3.1. The size distribution of avalanches of changing gene activities following
perturbation

One of the features of both the ordered and chaotic regimes concerns the size distri-
bution of avalanches of “damage” that spread through the network by transient perturba-
tion of the activity of a single gene by transiently reversing its activity. A characteristic
of the chaotic regime is that most avalanches are vast, altering the activities of 30–
50%, approximately, of the N genes. For a biological network with 30,000 genes that
would predict that about 10,000–15,000 genes or so would commonly alter their be-
havior following a random perturbation to the activity of a single gene. This has never
been seen to my knowledge, and is biologically implausible. In the ordered regime,
by contrast, avalanches of damage do not propagate through the red frozen sea, hence
are con/ned to the green islands and perhaps the red genes that constitute the edges
of the green islands. The size distribution of avalanches is a power law with a /nite
cut o% that appears to scale, for K = 2 networks, as a square root function of N [14].
Thus, in humans, avalanches should typically a%ect one to several 100 genes. This is
biologically plausible.

3.2. Cell types as dynamical attractors

I now make a single biological interpretation. Humans have about 265 cell types
[22]. By contrast, the state space of a gene network of 30,000 genes is huge. Most
states of the genome cannot be cell types. Following Jacob and Monod [23], I shall
propose that some or all of the alternative state cycle attractors of random Boolean
nets, or alternative attractors of other dynamical models of the gene network, constitute
the cell types of the organism. Aldana et al. [10], have raised an important criticism
of this concept for Boolean nets, namely that closure of a state cycle orbit is unstable
to noise. This may be correct. However, if noise is rare compared to convergence
onto attractors, or if error-correcting mechanisms such as majority organs are present,
attractors may be stable to noise. A possible manifestation of random molecular noise
in real genetic networks may be the phenomenon of metaplasia [5].
On a theoretical level, at least two further major questions are raised by the hypoth-

esis that attractors correspond to cell types. First, is there a scaling law for the number
of state cycle attractors as a function of N that would predict correctly the scaling
relation between the number of cell types of an organism and the number of its genes,
(perhaps including the possibility of “junk” RNA playing regulatory roles [24]). Re-
cently, Socolar and I [25], found evidence that the scaling for K =2 networks is faster
than linear, but is slower deeper in the ordered regime. This fact, if it holds up, means
that we cannot predict the scaling law for the number of cell types as a function of
the number of genes without knowing where, if at all, cells lie in the ordered regime,
and also knowing the number of genes.
Another feature of interest, if cell types are attractors, is to measure the overlap in

gene expression patterns between all the attractors. There are several ways to de/ne this
overlap. For example the average number of states on an attractor that a gene is active
can be calculated, and a real vector of activities represents that attractor. The Euclidean
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distance between each pair of attractors can be calculated. This gives a distribution of
distances that can be compared to gene expression patterns in di%erent cell types.

3.3. The Derrida curve: measuring position in the ordered or chaotic regime

A Derrida plot is created as follows: Consider initial pairs of Boolean network states.
Count the fraction of genes in the two states that are in di%erent states of activity. This
normalized Hamming distance is called the initial distance between the pair of states,
Dt. Now let each state evolve to its successor state under the rules of the network.
Measure the distance between the pair of successor states, call that normalized distance
Dt+1. In a Cartesian coordinate system, let the X -axis give all values of Dt, from 0.0
to 1.0, and the Y -axis give all the values of Dt+1 from 0.0 to 1.0. Now plot, for
any initial pair of states at a distance Dt, and their successor states at distance Dt+1,
a single point in the coordinate system corresponding to both Dt on the X -axis, and
Dt+1 on the Y -axis. Plot the results for many pairs of initial states at di%erent Dt
values. The Derrida curve is curve connecting the mean for each Dt [5].
The main diagonal separates the ordered from the chaotic regimes. In the ordered

regime, the Derrida curve, for all Dt, is everywhere below the main diagonal, implying
that, on average, pairs of states lie on trajectories which converge in state space. This
convergence is the heart of homeostasis. In the chaotic regime, small Dt states diverge,
so that the curve passes above the main diagonal for small Dt, and falls below it
for large enough Dt. Thus, nearby states in the chaotic regime, on average, lie on
trajectories that diverge from one another in state space.
Note that, by measuring the Derrida curve for real cells, by perturbing gene activities

transiently and measuring divergence or convergence in expression patterns, we can
attempt to assess whether and where cells lie in the ordered or chaotic regime, hence
we should be able to deduce the scaling law for the number of cell types in an organism
as a function of the number of its genes.

3.4. Pathways of di)erentiation

If cell types are attractors, then transitions between attractors induced by perturbations
model pathways of di%erentiation. For K=2 networks each attractor can only Low to a
few other model cell types by single gene perturbations, and they to a few others, and
so on. This implies that di%erentiation from the zygote must follow branching pathways
of di%erentiation. This property is seen in all multi-celled organisms developing from
a zygote. Statistical features of such pathways, as directed graphs, can be studied in
ensembles and organisms.
A number of features of pathways of di%erentiation in ensembles and cells can be

measured: the number of states on the transient, the gene activity di%erences between
adjacent states along the transient, the distribution in the number of times genes alter
activities along the transients, and the distribution of the average time a gene is in a
di%erent state of activity along a transient compared to its activity in the state on the
initial attractor state which was perturbed.
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Two other features of transient pathways of di%erentiation should also be measur-
able currently. In K = 2 random Boolean nets, it is typical that there are multiple
perturbations to one state cycle attractor that lead, via di%erentiation pathways, to the
same target state cycle. Now these multiple transients may all be distinct, or some
pairs or higher ordered sets may join in /nal common state transition pathways to
the destination cell type. Most perturbations of randomly chosen genes leave standard
Boolean networks on states that return via some transient to the same attractor, thereby
exhibiting homeostasis. All the questions and properties noted above for transients
between state cycle attractors can also be asked of transients that return to the per-
turbed attractor. These properties can be measured in cells.

3.5. Functionally isolated “twinkling islands”: co-regulated genes

The green islands of the ordered regime are deeply interesting if real cells have both
a frozen red percolating component and such green twinkling islands. Such islands are
the paragraph structure of the genome. Each island is functionally isolated from the
other islands because no signal of gene activity changes can propagate between islands
through the frozen red sea. Thus each island has its own attractors and an attractor
of the whole network is a combination of choices on each island. This suggests a
combinatorial epigenetic code, and that the islands may be the major developmental
decision taking sub-circuits of the network as a whole. By measuring mutual informa-
tion between genes in the same and di%erent islands one achieves a cluster analysis of
the similarities in gene expression patterns that can be compared between ensembles
and real cells.

3.6. Changes of gene expression following deletion mutations

Another property of interest is the size distribution alterations in gene activities by
deletion of single genes. Serra et al. [26], have used K=2 canalyzing networks, carried
out such an analysis, and /nd that they can /t the distribution observed for several
hundred deletion mutants in yeast.

3.7. Attractor time scales

I have not mentioned what was the /rst surprising feature of the ordered versus
chaotic regime. The number of states on a state cycle in the chaotic regime is an
exponential function of N , the number of genes, so soon becomes vast as N increases.
For even small networks and realistic times for gene activities to change, it would take
billions of times the history of the universe to traverse the cycle, not a very attractive
model of a cell type.
Rather stunningly, for K=2 networks, the median cycle length is a square root func-

tion of the number of genes, N [4,5]. So if there are 30,000 genes, the typical cycle
is about 173 states long. If it takes 1–10 min to turn a gene on or o% it would take
173–1730 min to traverse the cycle, a perfectly plausible biological time scale. I want to
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stress how stunning I still /nd this result, which has been con/rmed
analytically [9].
This completes a starting list of M testable features of real cells, and the distributions

of those features in di%erent ensembles, to create an M -dimensional space, with clusters
of points or distributions representing ensembles or real cells. Many other features could
be added. The strategy would be to use Kullbeck–Leibler distances or other means to
measure which ensembles are closest on all M features simultaneously in real cells.
Given that, then the idea is to re/ne the good ensembles, using any data that comes
to light as constraints the ensemble must respect to create re/ned ensembles and hill
climb towards the data of real cells and organisms.
An ensemble that matches the M properties measured in real cells and organisms

will be of use in a variety of ways. At a minimum, such ensembles are null hypotheses
concerning real networks, which selection may have further modi/ed. The statistical
features of such ensembles, beyond the M , are hypotheses to be tested, both to learn
more about real cell networks, and to further re/ne the ensemble. Further, the ensemble
approach, if successful, aids the attempt to solve the inverse problem, for the ensemble
statistical features are constraints that reduce the search space for solving the inverse
problem. Finally, the ensemble should provide insight, analytic and otherwise, into the
organizing principles that explain the generic behaviors of ensemble members, hence,
hopefully, of cells.
A word about my friend Per Bak. I found him persistently creative, brilliant, open,

argumentative, and delightful. I admired him a great deal, shared his last weeks at a
distance, and miss him.
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