
Physica D 227 (2007) 100–104
www.elsevier.com/locate/physd
Measures for information propagation in Boolean networks
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Abstract

Boolean networks provide a large-scale model of gene regulatory and neuronal networks. In this paper, we study what kinds of Boolean
networks best propagate and process signals, i.e. information, in the presence of stochasticity and noise. We first examine two existing approaches
that use mutual information and find that these approaches do not capture well the phenomenon studied. We propose a new measure for information
propagation based on perturbation avalanches in Boolean networks and find that the measure is maximized in dynamically critical networks and
in subcritical networks if noise is present.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The concept of measuring information processing and
propagation in complex dynamical networks, such as gene
regulatory or neuronal networks, has lately gained attention
in the literature [1,2]. It has been proposed that gene
regulatory and neuronal networks operate in the so-called
dynamically critical regime [3–6,1]. A long-standing idea
has been that critical dynamics maximize the complexity,
information processing, or information propagation capabilities
of the system [3,7]. In this paper, we examine different
measures for information propagation in dynamical systems
with Boolean networks.

We first study how mutual information could be used to
measure information propagation by analyzing the methods
presented by Beggs and Plenz [1] and Luque and Ferrara [8].
We find that these methods fail to measure the information
propagation in many general cases. For this reason, we propose
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a new measure that uses instead of mutual information the
entropy of perturbation avalanches caused by small initial
perturbations.

Perturbation avalanches and branching processes have been
successfully used to understand how perturbations propagate
in dynamical networks [6,9,10]. We derive the size distribution
of perturbation avalanches in Boolean networks and propose a
new measure for information propagation based on the entropy
of avalanche size distributions. A similar approach has been
recently used by Kinouchi and Copelli [2]. In addition, we
introduce a stochastic model where some nodes are randomly
perturbed at each time step to study the effects of noise on the
proposed measure. Finally, we compare the analytical results to
results obtained from numerical experiments. We find that the
measure is maximized in dynamically critical networks and in
subcritical networks if noise is present.

2. Boolean networks

Boolean networks are mainly used as simplified models of
gene regulatory networks [11,12,3]. A Boolean network is a
directed graph with N nodes. The nodes represent genes and
the graph arcs represent biochemical interactions between the
genes. Each node is assigned a binary state variable and a

http://www.elsevier.com/locate/physd
mailto:pauli.ramo@tut.fi
mailto:skauffman@ucalgary.ca
mailto:kesseli@cs.tut.fi
mailto:yliharja@cs.tut.fi
http://dx.doi.org/10.1016/j.physd.2006.12.005


P. Rämö et al. / Physica D 227 (2007) 100–104 101
Boolean function as an update rule whose inputs are determined
according to the graph connections. Value 1 of the state
represents an active gene and value 0 represents a non-active
gene. Boolean function f associated with the node represents
the regulatory rule affecting the gene in question. We denote the
distribution over the set of functions in the network by F. The
in-degree and the function distribution are connected in such
a way that the degree distribution of the function distribution
matches the network in-degree distribution. The state x of the
network is the vector of state variable values xi of all the nodes
at time t . The network nodes are synchronously updated. In
mathematical terms, the state xi of the i th node of the network
is updated as

xi (t + 1) = fi (xi1(t), xi2(t), . . . , xiK (t))

where xi j is the j th connection to node i and K is the in-
degree of Boolean function fi . Boolean networks can be viewed
also as maps between different states as x(t + 1) = F(x(t)).
In quenched Boolean networks the network connections and
functions do not change over time.

The annealed approximation provides a probabilistic
framework in which to study the dynamics of Boolean
networks. In the approximation we shuffle the network
connections and functions after every time step. All the
analytical results in this paper are based on the annealed
approximation. The functions are taken from a given function
distribution F. Annealed networks can be constructed with any
in-degree pin(k) and out-degree pout( j) distribution. Of course,
the two distributions must have the same expectation 〈pin(k)〉.
In addition, we assume that the network size approaches
infinity, N → ∞. In practice, these approximations mean that
we can consider every node in the network as a probabilistic
entity that has a probability of having a specific in-degree, out-
degree, and Boolean function.

To make the analysis as general as possible, we assume that
the Boolean network may have any distribution of functions.
The bias bt is the probability that a node has value 1 at time t .
The bias-map bt+1 = g(bt ) gives the evolution of bt as

bt+1 = g(bt ) = E
f ∈F

 ∑
x∈{0,1}K

f (x)P(x |bt )

 ,

where

P(x |bt ) = b|x |

t (1 − bt )
K−|x |

is the probability for the input vector x when bt is known. f
is a Boolean function drawn from the distribution F and K is
the in-degree of function f . We assume that all the bias-maps
of the biologically realistic distributions F have a single stable
fixed point b∗

= g(b∗) [13]. The average influence I is defined
as the probability that a perturbation of an input to f (x) has an
influence on its output value in the stationary state characterized
by b∗:

I = E
f ∈F

 1
K

K∑
i=1

∑
x∈{0,1}K

f (x) ⊕ f (x ⊕ ei )P(x |b∗)

 .
Here, ei is the unit vector with value 1 at the i th position and ⊕

refers to the exclusive or operator. We define the network order
parameter λ as

λ = 〈pin(k)〉I,

where 〈pin(k)〉 is the expected value of the distribution pin(k).
The order parameter λ is the average amount of nodes that are
perturbed one time step after we have flipped the value of a
randomly chosen node, given that the network has reached the
bias-map fixed point before the perturbation. Networks with
λ < 1 are stable, networks with λ = 1 are critical, and networks
with λ > 1 are chaotic.

A Derrida map [14,15] is a one-dimensional mapping
ρt+1 = h(ρt ), ρ ∈ {0, 1} that illustrates the propagation
of perturbations in annealed Boolean networks. ρt is the
proportion of perturbed nodes in the network at time t .
The Derrida map has a stable fixed point at zero for stable
and critical networks and a non-zero fixed point for chaotic
networks [14]. The fixed point of the Derrida map gives the
final probability that a node is perturbed after the network has
been run for many time steps. The slope of the Derrida map is
the order parameter λ [15].

3. Mutual information in dynamical networks

Mutual information is commonly used to study how much
information can be passed through a system. Beggs and
Plenz [1] and Luque and Ferrara [8] proposed two different
approaches that use mutual information to measure information
propagation in dynamical networks. They claim that their
measures are maximized in critical networks. We will find in
this section that these results do not apply in many general
cases. We think this is an important note since the result
presented in [1] is cited by many other papers; see for example
[2,16,17].

Mutual information MI can be defined as follows:

MI = H1 + H2 − H12,

where H1 is the input entropy:

H1 = −

∑
si ∈S

P1(si ) log(P1(si )),

H2 is the output entropy:

H2 = −

∑
s j ∈S

P2(s j ) log(P2(s j )),

and H1,2 is the joint entropy of the input and output:

H1,2 = −

∑
si ∈S

∑
s j ∈S

P(si , s j ) log(P(si , s j )).

Here, S refers to the set of possible symbols, P1(si ) is the
probability that symbol si occurs in the input, and P2(s j ) is the
probability that symbol s j occurs in the output.

Beggs and Plenz [1] used feed-forward networks with a
finite number of nodes on each layer. The nodes are randomly
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connected to the next layer, and the update rules are chosen so
that a perturbation of a node is transmitted, on average, to λ

nodes on the next layer. The first layer is the input layer and the
last layer is the output layer. They calculated the average mutual
information between the symbols in the input and output layers
given the distribution of input symbols and given λ. See [1] for
the exact model definition.

Let us now concentrate on this approach in more detail.
The setting corresponds to annealed Boolean networks with
a finite number of nodes on each layer. Here, instead of the
actual state the configuration of perturbed nodes constitute a
symbol. We note that the probability P2(s2) that the output
symbol s2 ∈ S occurs is only related to the probability that
an output node is perturbed. This is true because the layers
are randomly connected, i.e. there are no logical connections
between a pair of input and output nodes. If there are enough
layers, all initial perturbations finally die out in stable and
critical networks because the corresponding Derrida map has a
fixed point at zero. In these cases, the output contains only non-
perturbed nodes. Therefore, any output symbol is uncorrelated
with the input symbols. From this, we directly see that the
mutual information is not maximized in critical networks. In
chaotic networks the analysis becomes a bit more complicated.
We have feed-forward networks with a finite number of nodes
in each layer. Therefore, the perturbation size may reach zero
and stay there. In addition, we know from the theory of
branching processes that the perturbation size may converge
also in chaotic networks when the initial perturbations have
a finite size; see the next section for details. In a typical
(Boolean network) case, however, the perturbation propagates
so that the probability of a node being perturbed in the output
layer is close to the non-zero Derrida map fixed point. This
result may vary depending on how we define the case where
a node gets a perturbation from multiple sources. Therefore, for
some particular parameters of the model the mutual information
may have a small non-zero value for chaotic networks. In
conclusion, the maximum of the mutual information is not
found in critical networks in this model as claimed.

Luque and Ferrara [8] have used a different approach to use
mutual information in annealed Boolean networks. They found
that the mutual information between the consecutive states of a
node in the network is

MI = −p log p − (1 − p) log(1 − p) +
a − 1 + 2p

2

× log
(

a − 1 + 2p
2p

)
+

1 − a
2

log
(

1 − a
2p

)
+

a + 1 − 2p
2

× log
(

a + 1 − 2p
2(1 − p)

)
+

1 − a
2

log
(

1 − a
2(1 − p)

)
.

Here, a is the probability that a node keeps its value in
the Boolean network over a single time step, and p is the
probability that a random Boolean function outputs one. In
other words, a is one minus the fixed point of the corresponding
Derrida map [15,18]. The authors found that this measure
for complexity is maximized in critical Boolean networks
in networks with constant in-degree K = 3. However, the
measure fails to make a separation between stable networks.
For example, the measure does not separate the networks with
constant in-degrees K = 1 and K = 1.5, since all stable
networks have the Derrida map fixed point at zero (a = 1).
In addition, the analysis presented can only be directly applied
to random Boolean networks with random functions.

4. Measure for information propagation based on pertur-
bation avalanches

A perturbation is a random flip to a node in the network. The
size of a perturbation avalanche is the total number of nodes that
have behaved differently than the nodes in the non-perturbed
network. We may interpret the initial perturbation as the signal
and the perturbation avalanche as the system’s response to
the signal. We propose to use the entropy of the avalanche
size distribution as a measure for information propagation in
Boolean networks. The measure illustrates how wide the scale
of responses that the system can have to the initial signal is. We
define the measure H as

H = −

∞∑
n=1

pn log pn,

where pn is the probability that the perturbation avalanche has
magnitude n.

Let us assume that we have a Boolean network with a
Poisson out-degree distribution

pout( j) =
K j

j !
e−K .

Here, pout( j) is the probability that a node has j out-going
connections, and K is the distribution parameter. Randomly
constructed graphs have a Poisson out-degree distribution.
However, real gene regulatory or neural networks may have a
scale-free out-degree distribution [19].

The propagation of a perturbation that has an absolute size
Z t ∈ Z at time t can be studied by using the theory of branching
processes [10,9]. In our analysis we use the initial perturbation
size Z0 = 1. The perturbation size Z t is the non-normalized
Hamming distance after t time steps between the network states
with and without the perturbation. When we use the annealed
approximation in the limit N → ∞, all perturbed nodes at any
time step are independent of each other. With probability one
a perturbation of finite size will spread to nodes that were not
previously perturbed. In addition, if Z t = 0, then Z t+a = 0
for any a > 0. Therefore, the propagation of a perturbation
in Boolean networks (N → ∞) is a branching process. For a
branching process the branching probability distribution qk =

P(Z1 = k) is the probability that a node in the process produces
k daughters. For a Boolean network it is given by

qk =

∞∑
j=k

(
j
k

)
pout( j)I k(1 − I ) j−k

=

(
I

1 − I

)k ∞∑
j=k

(
j
k

)
pout( j)(1 − I ) j .
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When the out-degree distribution is Poissonian this can be
calculated to be

qk =

(
λ

K − λ

)k ∞∑
j=k

j !
( j − k)!k!

K j

j !
e−K (1 − I ) j

=
λk

(K − λ)n
e−K

k!

∞∑
j=k

1
( j − k)!

(K − λ) j−k(K − λ)k

=
λk

k!
e−K eK−λ

=
λk

k!
e−λ.

The generating function of this branching probability distribu-
tion is given by

Q(s) =

∞∑
n=0

λn

n!
e−λsn

= eλ(s−1).

The iterates of the generating function Q(s) are defined as

Q0(s) = s,

Qt+1(s) = Q(Qt (s)).

In general, the generating function of Z t is Qt (s) [9]. Let
λ = E[Z1] = Q′(1) and σ 2

= E[Z2
1] − λ2

= Q′′(1) + λ − λ2.
The expectation E[Z t ] and variance V [Z t ] are

E[Z t ] = Q′
t (1) = λt ,

V [Z t ] =

σ 2λt (λt
− 1)

λ2 − λ
, λ 6= 1

tσ 2, λ = 1.

The limit limt→∞ Qt (s) = q is q = 1 for ordered and critical
networks (λ ≤ 1) and constant q < 1 for chaotic networks
(λ > 1). Moreover, we can prove that Z t → ∞ with probability
1 − q and Z t → 0 with probability q when t → ∞ [9].
This means that even if the Boolean network is chaotic, there
is a considerable probability q that the perturbation size will
converge to zero. Perturbation spread in the network can be
interpreted as a Markov random walk with adsorbing boundary
at i = 0. Let us define pi, j as

pi, j = P(Z t+1 = j |Z t = i), i, j ∈ Z

and the generating function of the random walk as

Pi (s) =

∞∑
j=0

pi, j s j .

It is well known that the generating function of a sum of i
independent random variables, each distributed with qk , can be
expressed as

Pi (s) = Q(s)i .

From this we get the Markov random walk for a Boolean
network with a Poisson out-degree distribution as

pi, j =
(λi) j

j !
e−λi .

The avalanche size n is the total number of nodes generated by
the branching process. The probability pn that the avalanche
Fig. 1. Entropies of avalanche size distributions for Boolean networks
generated with varying order parameter λ. The solid line is the theoretical
estimate without noise and the broken lines are the numerical experiments with
and without noise (r = 0). The amount of noise in the numerical experiments
was r = 0.01, r = 0.02, and r = 0.05.

size is n can be conveniently expressed as [10,20]

pn =
1
n

pn,n−1. (1)

This result applies for all Markov random walks [20]. For the
Poisson case we have

pn =
(nλ)n−1

n!
e−nλ.

By using Stirling’s approximation n! ≈
√

2πn( n
e )n we have

pn ≈
1

√
2π

en(1−λ)λn−1n−
3
2 ,

from which we see that for critical Boolean networks (λ = 1)

pn ∼ n−
3
2 .

This result coincides with the well known result that in critical
branching processes the avalanche size distribution is scale-free
with exponent γ = −

3
2 . Fig. 1 shows how the measure H

changes when the order parameter λ is varied. We note that the
measure is maximized in critical networks.

We compared the analytical result to a numerical
result obtained from randomly generated quenched Boolean
networks. The quenched networks had random functions
chosen so that the whole network had the desired λ. In the
numerical experiments, we generated 400 Boolean networks
with N = 100 nodes. Then, we ran each of them for 100 time
steps. The starting point was a random state and a perturbed
state with one node having a different value than the random
initial state. The total number of nodes that, at some time point,
had a different value was the avalanche size. The experiment
was repeated for different values λ in small intervals.

Sometimes in quenched networks the initial perturbation
causes the network to settle down in a different attractor. In
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this case, the perturbation size defined in the above-mentioned
way approaches infinity when the number of steps is increased.
In addition, especially in chaotic networks, the perturbation
avalanche size may approach extremely large values. Therefore,
we interpreted avalanche sizes that were larger than the network
size as avalanches that percolate throughout the whole system.
We included all such large avalanches in the probability of
avalanche size n = 100.

Most biological systems are stochastic and random
fluctuations are common. For these reasons, it is important to
study how random perturbations affect the proposed measure.
As a simple experiment, we flipped the value of a node
with probability r at each time step. We repeated the above-
mentioned numerical experiments with r = 0.01, r = 0.02,
and r = 0.05. See the broken lines in Fig. 1 for the numerical
results. We note that, if noise is present, the maximum is shifted
into the ordered regime. In addition, the peak is higher for
networks with noise and the measure has much lower values
for chaotic networks when noise is present.

5. Discussion

We have investigated what kind of Boolean networks best
propagate information. We have shown that some methods
presented in the literature using mutual information do not
correctly measure the information propagation capabilities of
the network.

We have proposed a new measure for the propagation of
information in Boolean networks. The measure is based on
the entropy of the size distributions of perturbation avalanches
and illustrates the range of possible changes in the network
as a consequence of an initial small perturbation. We have
found that the measure is maximized in critical networks and
in subcritical networks if noise is present. In addition, we have
verified with numerical experiments the analytically derived
result.

Many complex dynamical systems, such as gene regulatory
or neuronal networks, should have a wide range of possible
ways to react to external signals. At the same time, the
system should be robust against stochasticity and noise. Critical
systems show perturbation avalanches with a power law
distribution that compromises between these two conflicting
constraints. Reactions of a large magnitude are relatively
probable, while most perturbations do not lead to large
avalanches. In addition, we have shown that if noise is present
in the system, information propagation is maximized in slightly
subcritical networks. In fact, critical networks with additional
noise would be slightly chaotic and therefore difficult to control.
The results suggest that in the presence of stochasticity and
noise, subcritical networks could appear critical. However, this
hypothesis requires further exploration.
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