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A new approach to drug discovery is based on the generation of high diversity libraries of DNA,
RNA, peptides or small molecules. Search of such libraries for useful molecules is an optimization problem
on high-dimensional molecular fitness landscapes. We utilize a spin-glass-like model, the NK model,
to analyze search strategies based on pooling, mutation, recombination and selective hill-climbing.
Our results suggest that pooling followed by recombination and/or hill-climbing finds better candidate
molecules than pooling alone on most molecular landscapes. Our results point to new experiments
to assess the structure of molecular fitness landscapes and improve current models.

1. Introduction

A new approach to drug discovery, variously called
applied molecular evolution, direction evolution and
molecular diversity, is beginning to transform the
search for drug candidates (Joyce, 1992; Kauffman,
1992). Unlike traditional biotechnology, the new
techniques are based on the generation of high
diversity libraries of more or less random DNA, RNA,
proteins or small organic molecules, coupled with
screening or selection among the resulting libraries for
molecular candidates of interest. Molecules of interest
might be mimics of naturally occurring hormones,
hence agonize, antagonize or modulate the action of
such hormones, might mimic epitopes of pathogens
and hence serve as candidate vaccines, might serve
as biosensors, might act as catalysts for a variety
of reactions, might function as cis-acting regulatory
DNA sequences within host DNA, or as novel genes
whose products impinge upon the genomic regulatory
circuitry within cells. At present, maximum diversity
libraries approach 10" for DNA, RNA and peptides or
polypeptides (Ellington & Szostak, 1990; Beaudry &
Joyce, 1992; Bartel & Szostak, 1993), and in the
millions for small organic molecule libraries. The
medical and basic science potential of applied
molecular evolution appears to be great.

In parallel with the emerging technologies to
generate and screen or select from such libraries, a
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growing effect is underway to study the structure of
molecular “fitness landscapes’ in order to understand
how to optimize search for useful molecules. At
present, there are three broad approaches to such
search: pooling strategies, mutation and selection for
fitter variants, and the use of recombination among
candidate molecules. In the present article, we discuss
a specific model of molecular fitness landscapes, the
NK model (Kauffman et al., 1989; Weinberger, 1991;
Kauffman, 1993), itself based on spin-glasses (Stein,
1992). We utilize this family of landscapes to explore
both the relative usefulness of the three strategies
mentioned, as well as the information about the
structure of molecular fitness landscapes that current
experimental efforts can uncover. The NK model is
a first statistical model of molecular fitness landscapes.
While the NK model has been applied with some
success to maturation of the immune response
(Kauffman et al., 1988; Kauffman & Weinberger,
1989), it can best be viewed as offering a test-bed
for examining optimization strategies in molecular
search. More refined theory about optimizing search
for useful molecules awaits improved data on the
structure of real molecular fitness landscapes.

The article is organized as follows. In the Section 2,
fundamental features of rugged fitness landscapes and
the NK model are introduced. In the Section 3, we
describe pooling strategies and describe predictions
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about results of such pooling strategies as a function
of fitness structure. We ask whether pooling strategies
yield highly fit molecular candidates when used alone,
or whether fitter candidates are likely to be found by
following pooling strategies with mutation and
selection. Section 4 explores the efficacy of recombina-
tion without or with mutation and selection among
pool strategy candidates to yield even fitter candidates.
We discuss uses of single and double mutant variants
of pool-optimal sequences to find better sequences in
Section 5 and summarize how the various features of
smooth or rugged fitness landscapes change in
coordinated ways as visualized by the experimental
approaches.

2. Fitness Landscapes and the NK Model

We define next the concepts of sequence spaces and
molecular fitness landscapes. Consider sequences of
letters drawn from an alphabet of A characters. If
the sequence is of length N then there are A" poss-
ible sequences of that length. For example there are 20"
possible proteins of N amino acids and 4" possible
polynucleotides of N nucleotides. To define a fitness
landscape on a sequence space we need to add two
features.

First, in order to define a sequence space we
need a notion of neighboring sequences. The usual
measure of distance in sequence spaces is Hamming
distance. The Hamming distance counts the number of
positions where two sequences differ. The N(4—1)
closest neighbors of a sequence are called its
one-mutant neighbors. For each of the positions we
can change the symbol to any of the 4 —1 differing
symbols and we can do this at any of the N pos-
itions. (Similarly there are (§) (4—1) two-mutants
whose Hamming distance is 2 from the wild-type
sequence). In the case of 4 =2 with Hamming distance
measuring the distance between sequences then each
sequence of length N has N one-mutant neighbors.
This allows definition of a sequence space in which the
sequences of length N lie on the N-dimensional
Boolean hypercube with the edges of the cube
connecting one-mutant neighbors. The case of bit
strings of length 4, hence the four-dimensional
Boolean hypercube, is shown in Fig. 1(a).

The final component of a fitness landscape is
a mapping from sequences to real numbers. This
number may be the sequence’s ability to perform some
function. For example it may be a polymer’s affinity for
a specific ligand, say the estrogen receptor, in specified
conditions. Then think of that affinity as a “height” at
each point on the Boolean hypercube. The distribution
of these heights forms a molecular fitness landscape for
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F1G. 1. (a) The four-dimensional Boolean hypercube; (b) with rank
ordered fitnesses.

the specific function of binding the estrogen receptor.
In Fig. 1(b), we have rank-ordered the 16 possible 4-bit
tetramers from the worst, 1, to the best, 16. In this
particular case, we have in fact assigned the rank
orderings to the 16 vertices completely at random,
creating a random fitness landscape.

The simplest adaptive walk on a molecular fitness
landscape (Maynard Smith, 1970) starts with an
arbitrary polymer, considers a randomly chosen
one-mutant neighbor, and, if that neighbor is fitter,
moves to the fitter neighbor. This allows the edges of
the hypercube [Fig. 1(a)] to be labeled with arrows
showing the directions “uphill” in fitness from any
vertex [Fig. 1(b)]. An adaptive walk, in this simple
sense, follows arrows uphill from an initial polymer
until a polymer is reached which is fitter than all its
one-mutant neighbors. Such a polymer is a local peak
on the fitness landscape. Figure 1(b) shows a number
of features of molecular fitness landscapes. These
include the number of directions uphill at each point
in the walk and how the number of directions uphill
dwindles to 0 as peaks are approached, the expected
number of random mutants tried on a walk to a
peak, the fraction of local optima accessible to typical
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initial polymers and the fraction of polymers able
to climb to the global peak by adaptive walks.
Beyond the simplest versions of adaptive walks, we can
consider walks via two-mutant neighbors, three-mu-
tant neighbors, or less fit neighbors, measures of the
correlation structure of landscapes, and adaptive
processes closer to population genetics which include
mutation, recombination, selection and drift (Wright,
1932; Amitrano et al., 1989; Eigen et al., 1989; Fontana
et al., 1989; Kauffman & Weinberger, 1989; Derrida &
Peliti, 1991; Fontana et al., 1991; Stadler, 1992).

The NK model generates a large family of fitness
landscapes. It consists of a set of IV sites where each site
can be in A alternative states. In the NK model, we
posit that each site makes a contribution to the fitness
of the overall polymer which depends upon its own
state, s;, and the state of K other sites in the polymer,
{si, ..., s« }. Thus, K reflects “epistatic” interactions
among the sites. The K sites which influence each site
may be chosen in any way. For example, the K sites
may be its left and right flanking neighbors, may be
chosen at random among the N, or may be chosen in
any other way. For each of the A¥"' combinations of
states of the K+ 1 sites, the fitness contribution of the
site in question, F1°, is assigned, once and for all, from
the uniform distribution between [0, 1]. The fitness of
any polymer is defined as the mean of the fitness
contribution of its N sites as in eqn (1).

M=

Fisy=5 ¥ B9 S s (1)

1

i

A specific example of this construction of an NK
landscape for N=3, K=2 and A=2 is found in
Fig 2(a)—(c). Figure 2(a) first specifies the epistatic
connections between sites, then Fig. 2(b) specifies the
site fitness for all possible combinations of neighbors.
Finally, Fig. 2(c) shows the polymer fitnesses on the
Boolean hypercube with arrows pointing in the uphill
directions.

The NK model yields a family of fitness landscapes
as the major parameters, N and K, are altered. For
K=0, each site is independent of all other sites.
The resulting fitness landscape is Fujiyama-like with a
single peak and smooth sides. When K takes its
maximum value, K=N—1, each site is affected by
every site, as exemplified by Fig. 2(a)—(c). A change in
state at any site therefore affects all sites, yielding a new
random fitness contribution by each site. Thus,
one-mutant neighbors have fitnesses which are fully
random with respect to one another. The K=N—1
limit corresponds to the random landscape shown in
Fig. 1(b), and to Derrida’s “random energy’’ model
of spin glasses (Derrida, 1981). Random landscapes
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Fi1G. 2. (a) Assignment of the K=2 epistatic interactions for each
of the N=3 sites, (b) Random assignment of fitness values, (c)
Fitness landscape on the Boolean cube indicating uphill directions.

have on the order of 2¥/(N+1) local optima, walk
lengths to optima scale as InN, every step “uphill’ the
expected number of directions uphill is halved,
the expected number of mutants tried on a random
adaptive walk is N, only a tiny fraction of local optima
are accessible from any initial point, and the global
optimum is accessible from only a tiny fraction of
sequence space (Kauffman & Levin, 1987; Macken &
Perelson, 1989; Kauffman, 1993).

As K increases from K=0 to K=N—1, landscapes
become increasingly rugged and multipeaked. This
reflects the increasing levels of conflicting constraints
among the sites as the richness of epistatic interactions,
K, increases. Because of these increasing conflicting
constraints, as K increases, local peaks dwindle in
height. Figures 3(a)-(d) summarize these features.
Other features of NK landscapes are described
elsewhere (Kauffman, 1993).
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F1G. 3. The ruggedness of an NK landscape for N =96, showing the fitness of all 96 one-mutant variants of a random local optimum for

(a) K=2, (b) K=8, (c) K=48, and (d) K=95.

3. Pooling Strategies

The first approach to the generation of high-
diversity libraries of peptides and practical search
among such libraries for useful polymers is the pooling
strategy introduced by Geysen (Geysen et al., 1987),
and subsequently utilized by numerous other workers
(Houghten et al., 1991). Here one wishes to find a
peptide, in a concrete case, a hexamer, which is able to
bind to a specific monoclonal antibody or to a specific
receptor. An example would be the estrogen receptor.
The central idea is to create specific pools that partition
the 20° (=64 million) possible hexapeptides into
non-overlapping pools such that members of any pool
share specific subsequences. These pools are tested for
binding capacity and the best pool is picked. This pool
is then used over cycles to create successive subpools
each of which share additional subsequences. At each
cycle the sub-pools are tested for binding and the best

sub-pool is used for subsequent cycles until a single
specified optimal sequence is identified. For example,
one pool might have hexamers all of which have glycine
at position 3 and alanine at position 4, but be random
at the remaining four positions.

In Geysen’s original approach, each pool is localized
on one of 400 pins formed by a 20 x 20 array. Thus,
each pin carries a mixture of hexamers which are
identical in two of their amino acids, and random at the
remaining four positions. The pins are tested with
labeled estrogen receptor. The pin with the most bound
counts is chosen for further use. For example, if the pin
with phenylalanine and tryptophane at positions 3 and
4 binds the most counts, in a subsequent iteration,
these two amino acids are held fixed at positions 3
and 4 and 400 partitioning sub-pools of the possible
simultaneous choices at positions 2 and 5 but random
in positions 1 and 6 are generated and localized on the
400 pins. Testing with labeled estrogen receptor picks
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out the pin with the most counts, hence fixes the amino
acids at positions 2, 3, 4 and 5. A final round of 400
partitioning sub-pools fixes the remaining 1st and 6th
position of the hexamer.

Pooling strategies are remarkably effective in
producing hexamers with relatively high affinity for
a variety of antibody and receptor ligands. Such
strategies are now in rather wide use. Thus, it
is germane to characterize the features of pooling
as a search strategy and compare it to alternatives
based on mutation, recombination and selection, or
mixtures of all these approaches.

The most obvious strength of pooling is that it
allows a large in vitro library to be screened
simultaneously via partitioning into subsets which
share specific subsequences. Conversely, in the first two
cycles of screening, the counts bound on any one
pin reflect the average behavior of the mixture of
sequences at that pin, and hence may reflect high
affinity of one member of the mixture, or modest
affinity of many members of the mixture. Therefore, an
iterative process which sequentially picks the best
pin-pool at each step is not guaranteed to find the true
optimal sequence among the 64 million hexapeptides.
Indeed, iterative pooling to achieve a “pool optimal”
sequence does not guarantee that the pool-optimal
hexamer is itself even a local peak on the molecular
fitness landscape.

In order to explore the implications of fitness
landscape structure for pooling strategies, we utilized
the NK model, fixing N=6 to represent hexamers,
A=20 to reflect the 20 possible amino acids, and
allowed K to vary from 0 to its maximum value, 5. We
considered the case where the K sites affecting any
site are drawn at random among the N, and the case
where the K sites are the left and right flanking
neighbors. In this latter case we modeled peptides
as closed ring structures so that each amino acid was
affected by K other sites.

We modeled two alternative pooling strategies.
In the first, method 1, the first cycle of 400 pools
were fixed in positions 3 and 4 and random at the
remaining positions, and the pool with the highest
average fitness—modeling the best pin—was selected.
On the second cycle, 400 pools were fixed in positions
2 and 5 and the fittest pool chosen, thus fixing positions
2, 3, 4 and 5. On a final third cycle, the remaining
400 possibilities, each a unique sequence fixed at all
six positions, were tested and the fittest chosen.
This process yields a “pool optimum”. In a second
pooling strategy, method 2, mimicking that used by
Geysen, the initial cycle treated 400 pools fixed
at positions 3 and 4, and picked the fittest pool.
The second cycle, however, considered the 20 possible

trimers fixed at positions 2, 3 and 4 plus the 20 possible
trimers fixed at positions 3, 4 and 5. The best of
these 40 pools were selected, and via further iterations,
the remaining three positions in the model hexamer
were fixed. At each pooling cycle, the maximum
diversity of model hexamers in any single pool —hence
pin—was limited to 1000 for computational
convenience.

Figures 4(a)—(f) and 5(a)—(f) show the model results
for the distribution of fitnesses over the 400 sub-pools
at each of the three cycles in method 1 and over the 400
or 40 sub-pools at each of the five cycles in method 2.
These distributions model the expected distribution of
labeled estrogen receptor bound to the set of pins at
each pooling cycle.

Figures 4 and 5 reveal interesting general fea-
tures. When K=0 landscapes are smooth and single
peaked, successive pooling cycles yield fitness
distribution which shift successively to higher fitness,
modeling successively higher average bound counts to
the pins. As K increases, this pattern changes. For
K =3 for example, the fitness distributions of the first
and second cycles nearly overlap. When K increases to
its maximal value, 5, fitness landscapes are fully
random, and the peaks of all early pool cycles nearly
coincide. Similarly, the fitness of the best candidate at
each cycle of pooling and screening improves more
or less uniformly on K=0 landscapes, but as K
increases and landscapes become more rugged, the best
candidate at each cycle improves slowly over early
cycles and more rapidly over later cycles.

Published data are not available to compare the
predictions of Figs 4 and 5 with real molecular data.
However, unpublished data from Geysen suggests
that, using method 2, successive peaks of the pool-pin
distribution shift to the right over the five cycles of
pin screening. If correct, Geysen’s data, and further
unpublished data from Houghten showing successive
shifting to higher mean affinities over pooling cycles
(Geysen et al., 1987; Houghten et al., 1991), would be
inconsistent with fully random landscapes among
hexamer peptides, and suggest that landscapes are at
least modestly correlated.

Figures 6(a) and (b) compare the fitness of pool
optima under methods 1 and 2 for linear and random
K connections. In general, method 1 outperforms
method 2 more profoundly as landscape ruggedness
increases.

In order to test whether pool optimal sequences were
even local peaks on the corresponding model fitness
landscapes, we carried out adaptive walks from each
pool optimum. To do so the 19x6 one-mutant
variants of the pool optimum were generated, and
adaptive walks uphill via all fitter variants were carried
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Pooling histograms, K = 0, method 1
N =6, A =20, random connections
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F1G. 4. Fitness histograms under pooling iterations for method 1 with (a) K=0, (b) K=1, (¢c) K=2, (d) K=3, (¢) K=4, and (f) K=5, with
random connections.

out until each lineage terminated on a local peak. Thus,
each pool optimum might itself be a local peak, or
might yield a branching walk to one or many
alternative local peaks. We characterized several

features of these walks: the probability that a pool
optimum was a local peak, mean and maximum
number of steps from the pool optimum to local peaks,
the mean and maximum number of peaks found and
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F1G. 5. Fitness histograms under pooling iterations for method 2 with (a) K=0, (b) K=1, (c) K=2, (d) K=3, (¢) K=4, and (f) K=5, with
random connections.

the number of directions uphill at each step. The results
are shown for method 2 with random connections in
Figs 7, 8, 9 and 10. Results are similar for linear
connections and method 1.

Figure 7 shows that pool optima are local optima
about 50% of the time on smooth landscapes, and are
increasingly likely to be local optima as landscape
ruggedness increases. Figure 8 shows that typical walks
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<F> at pooled optima
N =6, A =20, linear connections
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F1G. 6. Expected fitnesses obtained by pooling as a function of K
under (a) linear connections and (b) random connections.

to local peaks are short, averaging less than a single
step due to cases where the pool optimum is a local
optimum. Occasionally, however, long walks of up to
14 steps are encountered. Figure 9 shows that,
typically, only one or two neighboring local peaks are
accessible from the pool optimum. Figure 10
characterizes the dwindling number of directions
uphill along walks from pool optima.

It appears to be experimentally established that pool
optima are not always local peaks on the
fitness landscape. Houghten (Houghten et al., 1991;
Houghten 1994, personal communication) has found
at least one case where the pool optimum is a local
optimum on the hexamer landscape and another case
where the pool optimum is not a local optimum.
Assessing the frequency with which pool optima
are local peaks and the other features predicted
in Figs 8-10 is experimentally straightforward. It
requires trying all 19 x 6 =114 one-mutant variants of
the pooled optima and carrying out adaptive walks via
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F1G. 7. Fraction of times the pool result is a local optimum vs. K
under methods 1 and 2 for linear and random connections.

one-mutant variants to the nearby peaks. Our
simulations strongly suggest that better peptides may
often be found by one-mutant adaptive walks from the
pooled optimum rather than ceasing search with the
pool optimum alone.

4. Recombination

Recombination between two biopolymers of equal
length consists in cleaving each and ligating the “left”
end of one with the “‘right” end of the second. In
the case of polypeptides, left and right correspond to
3" and 5" ends of single stranded sequences. Molecular
recombination has the property that wherever two
polymers are identical to one another, they remain
identical under the operation of recombination. For
example, recombination between the binary strings

Average/maximum walk length vs. K, method 2
N =6, A =20, random connections
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Average/maximum number of peaks vs. K, method 2
N =6, A =20, random connections
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(0000) and (0011) cannot alter the 0 values in the first
two positions where the two sequences are identical,
but can, in principle, yield novelty in the final two
positions, such as sequences (0001) and (0010). In a
high-dimensional sequence space, recombination is a
search process restricted to the subspace where the
parental sequences differ, but lying in the hyperplanes
where parental sequences are identical.

Previous work using the NK model suggests that
cycles of recombination followed by hill climbing via

one-mutant neighbors to local peaks was useful in
locating subregions of rugged landscapes where very
high fitness peaks are concentrated (Kauffman, 1993).
In contrast, if such subregions do not exist,
recombination did not appear to be a useful search
strategy. The existence of subregions where high peaks
congregate in the NK model only occurs for relatively
low values of K. Here the correlation length of the
fitness landscape can span the entire space, implying
that the space as a whole is non-isotropic. When this
is true, high peaks carry mutual information about
the locations of other higher peaks with ever larger
“drainage” basins from which those peaks are
attainable via adaptive walks. Conversely, when K is
a large fraction of N landscapes are rugged and
isotropic, no special subregions exist, and recombina-
tion between isotropic subregions appears not to help
search.

In order to test the efficacy of recombination after
pooling, we modified methods 1 and 2. At each
step, rather than utilizing only the fittest pool-pin, we
retained the two fittest pool-pins. Each was used over
the remaining pool screening cycles, thereby generat-
ing eight terminal candidate pool optima for method
1 and 32 for method 2. Interestingly, many of the eight
or 32 pool candidates are often fitter than the pool
optimum which results from choosing the best pin at
each iteration. This suggests that such an expanded

Directions uphill vs. steps taken, method 2, N = 6, A = 20, random connections
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F1G. 10. Expected number of directions uphill as a function of steps uphill for K=0-5 for method 2 with random connections.
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pooling protocol may be useful. To test the efficacy of
recombination alone as a search strategy, we created all
possible recombinants at all five possible internal
cleavage sites in our model hexamers. The results
consistently yield polymers which were less fit than the
parental candidate pool optima. Recombination alone
does not help find fitter peptides.

In order to test whether recombinant hexamer
polymers lie in subregions of sequence space from
which they might climb by adaptive walks to higher
peaks than the parental pool optimal sequences, we
then carried out adaptive walks via fitter one-mutant
variants, following a single pathway upwards from
each polymer at each step choosing the fittest mutant.
In addition, we carried out similar adaptive walks from
pool optimal hexamer polymers. The results
for random connections and method 2 [Fig 11(a)—(c)]
show that, when followed by adaptive walks,
recombination does aid the search for higher peaks for
all values of K among such hexamers.

Experimental tests of the efficacy of recombination
alone or recombination followed by adaptive
hillclimbing are again straightforward. Our numerical
results suggest that recombination alone is unlikely to
yield fitter peptides but recombination followed by
hillclimbing should be useful.

5. Single and Double Mutants

Landscape ruggedness makes predictions about the
probability of finding fitter variants at any given
mutation distance from an initial polymer. For the
K=0 Fujiyama landscape and an initial polymer
located at the single, hence global, peak, no polymer
at any distance is fitter, and typically, those at a
one-mutant distance are fitter than those at a
two-mutant distance. Conversely, for fully random
landscapes, a polymer on a local peak with respect to
one-mutant variants may still be less fit than some two
mutant variants. Beyond the one-mutant range from a
local peak, the density distribution of fitter mutants is
independent of search distance. On rugged, multi-
peaked, but correlated landscapes, the probability of
finding fitter variants of a highly fit polymer decreases
with search distance.

In order to test the implications of the NK family of
landscapes for these properties, we located single pool
optimal candidates by methods 1 or 2, then generated
all 1 mutant and 2 mutant variants of the pool optima.
In Fig. 12(a)—(c) we show the fitness distribution of
one- and two-mutant variants for K=1, K=3 and
K =5 landscapes. On correlated landscapes K <5, the
mean of the one-mutant distribution is higher than the
two-mutant distribution. This reflects the correlation
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Fi1G. 11. Comparison of fitness distributions about the pool
optimum under pooling with hill climbing and recombination and
pooling with hill climbing alone under method 2 for random
connections for (a) K=1, (b) K=3, (c) K=5.

structure of the landscape, points further away are less
likely to be correlated with the high pooled fitness. In
the extreme, K= 5, landscapes are nearly fully random
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and fitness is independent of search distance except if
the pool optimal polymer happens to be a local peak;
hence the one-mutant and two-mutant distributions
nearly coincide.

Mutation spectra, K = 1, method 2
N =6, A =20, random connections
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Fi1G. 12. Fitness distributions of one- and two-mutants about

pooled optimum under method 2 with random connections for (a)
K=1, (b) K=3, and (c) K=5.

In Fig. 13 we summarize typical one-mutant fitness
distributions about the pooled optima for various
K. The histograms have a marked K dependence.
The mean decreases with K while the variance
increases. As K increases the histograms become more
Gaussian reflecting the decreasing correlation struc-
ture. For all values of K, one-mutant variants fitter
than the pool optimum are found. This simple
experiment performed on real molecular landscapes
would yield information on the ruggedness of the
landscape.

It is often the case with evolved proteins that
two independent and fitter one-mutant variants of an
initial protein can be combined to form the double
mutant which is even fitter than the additive effects
of the two single mutations alone. Figure 14 shows the
number of cases of such super-additive double
mutations among all double mutants formed from
all single mutants of pool optimal polymers based
on method 2. The results show that, on smooth
landscapes, K=0, super-additive double mutants are
not found, while for more rugged landscapes due to
larger K, super-additive mutants arise with modest
frequency.

The fact that super-additive mutants arise in evolved
polymers, and have also been found among the double
mutants of pool optimal hexamers generated by
method 2, suggests that hexamer landscapes cannot be
too smooth. In terms of the NK model, K must be 1 or
greater. Testing the frequency distribution of
super-additive mutants experimentally again should
give clues to the structure of molecular fitness
landscapes.

6. Discussion

Effective development of applied molecular evol-
ution to generate and identify useful polymers will
require sophisticated understanding of the structure of
molecular fitness landscapes and means to optimize
search upon them. At present, neither the structure
of such landscapes, nor optimal search strategies,
are understood. The two problems are interrelated,
for optimal search methods depend upon landscape
structure. To take a trivial example, were landscapes
Fujiyama like, with a single peak, greedy hill climbing
from any point would suffice. On fully random
landscapes, no search strategy helps.

The NK model has been useful in fitting features
of maturation of the immune response, suggesting that
the NK family of landscapes are at least a useful first
model of the statistical features of molecular fitness
landscapes, (Kauffman et al., 1988; Kauffman, 1993).
While better data and theory will yield more refined
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One-mutant spectra vs. fitness difference, method 2
N =6, A =20, random connections
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pictures of molecular fitness landscapes, the results
reported above are useful in at least three respects:

e The results make suggestions about optimiz-
ation among hexamer peptides. Thus, the results
suggest that often pooling does not even locate
local peaks. Hill climbing from pool optima to
local peaks should be simple and effective. In
addition, expanding standard pooling to include
the top few pins at each cycle appears useful.
Furthermore, the results suggest that recombina-
tion among several pool optima candidates,
followed by hill climbing via mutation and
selection from those recombinants, yields peptides
residing on higher peaks that hill climbing from
pool optima candidates without recombination.
Thus, use of recombination to find good
subregions of hexamer space seems useful and is
likely to extend to search in the larger sequences
spaces corresponding to longer polymers.

e These predictions of the NK model indicate simple
experiments against which the landscape model
may be tested. If pool optima are often not even
local peaks, that is directly testable by carrying out
mutation and selection from such pool optima.
The statistics of walk lengths to local peaks,
number of peaks accessible in the vicinity, and
dwindling numbers of directions uphill along such
walks are directly testable. If recombination alone
among several pool optima candidates typically
yields polymers less fit than the parental polymers,
that too is directly testable. Further, if hill climbing
from such recombinant polymers typically locates
better peaks than hill climbing from pool optimal
candidates, that prediction is testable. Finally, the
distribution of super-additive mutants can be
assessed.

e These predictions, and the capacity to test each,
make it clear that all these features reflect the
structure of the underlying molecular fitness
landscape and the search strategies used to find
polymers of interest. The NK model is merely a first
statistical model of molecular fitness landscapes.
Improved data and theory will lead to improved
pictures of such landscapes. The kinds of
predictions made above would all be verified were
they based on an adequate model of molecular
landscapes and search upon them. Thus, the
feature and predictions specified above are among
the desiderata of an adequate theory. Additional
features of importance include the presence or
absence of one or more “‘consensus’ subsequences,
typically found experimentally among small
peptides, and the distribution of extended ridges or

isolated islands of sequences with a desired
property in sequence space.

It is interesting that, even with the sparse data
available, we can already reach conclusions. From
the fact that, over pooling cycles, the observed
distribution of bound counts over the pins shifts
progressively to higher counts, we can conclude
that hexamer peptide landscapes are not fully random,
and must be moderately correlated. From the existence
of super-additive double mutants, we can conclude
with moderate confidence that landscapes are unlikely
to be extremely smooth and single peaked. If one
had to make an informed bet based on the NK
model of hexamer peptides, peptide landscapes
correspond roughly to K=3 landscapes, rugged but
correlated. In turn, this conclusion, were it valid,
would make predictions about structure function
relations, for it implies that each amino acid in a
hexamer makes a contribution to binding which is
influenced by about three other amino acids in that
peptide. Better models of fitness landscapes should
yield better insight into such structure function
relationships.
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