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Abstract. A new observational-inductive framework for scieme@merging due to recent developments in sendata,
systems, computers and knowledge discovery techaidthis new framework complements the standardthgtical-
deductive model that has sometimes been held upeastandard of what is meant by “science.” Theoltiygtical-
deductive/inductive schemas were developed befmgentassive growth (by orders of magnitude) in tbkime of
observational data and power of high performaneepeding. The strength of the observational-indigctinodel is its
firm foundation on both of these revolutionary depenents in the history of science.
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INTRODUCTION

For the first time in the 400 years since Franasd introduced induction, a confluence of new tedtgies is
enabling anobservational-inductive approach to scientific inference that is completaen to the standard
hypothetical-deductive approach. This standard Gaagdr has been marvelously successful in high-enghggics
and certain other fields where quantitative theoigan provide well-defined, falsifiable predictiotieat can be
directly tested in controlled, laboratory experitgeMhe hypothetical deductive framework was dgwetbprior to,
and has not significantly changed since the maggioeith (by orders of magnitude) in the volume b$ervational
data and power of high performance computing tepies. Further, for complex, interrelated multi-secaystems
like ecology, space physics or cosmology, espegcigithout a focus on in-principle falsifiability diypotheses, it
can lead to circumstances in which a particulaeassh program becomes an arbiter of acceptable[fat&uch
conditions can excessively shield a preferred thgmal framework from falsification (as happenedthwthe
uniformitarian doctrine in geology prior to platectonics). This tendency towards theory-dependésce key
weakness of the hypothetical-deductive approagteakness that can be offset by the observationsiapproach
of the observational-inductive framework.

FRAMEWORKS FOR KNOWLEDGE DISCOVERY

There have been many ways to represent the sateméthod (hypothesis formation, experimental prafan,
test, model refinement...). Most scientists agree titvate is no one single method and that simpligtierence to
the scientific method is insufficient; however, it rams unclear what these methods are when moreduijuated
and expressed. One thoughtful attempt to captweetisence of the scientific process led to sedi@ddcientific
method as information-seeking by questioning” apibblem-solving power [keeping in mind] the basiedretical
presupposition... of one’s questioning procedure” [Bh inductive logic of theories remains incompléte
philosophy of science.

Table 1 outlines the three basic frameworks ofragidie method and their characteristics in termgtaory to
observation level; emphasis on logical versus daogdication; and principal driver (theory vs. @vgation). Brief
explanations and examples are provided for botlhypethetical-deductive and hypothetical-inductirsemeworks.
The following three sections provide more backgrhuwetail and finally four specific examples of the
observational-inductive framework.



TABLE 1. Frameworks of scientific method.

HYPOTHETICAL- HYPOTHETICAL- OBSERVATIONAL-

DEDUCTIVE INDUCTIVE INDUCTIVE
LEVELS top-down interplay of levels bottom-up
FOCUS logical implication causal implication cauaplication
DRIVER theory theory/observation balance observetio

Hypothetical-deductive framework: The standard hypothetical-deductive methodologitamework for
science, which focuses on logical implication, desiits strength from the consistency, coherenue testability of
deduced consequences resulting from initial hymehelts first clear formulation as a methodologiamework
was carried out by Karl Popper in the 1930s [3]péitheses in this framework are, in part, inspirgebservations
but may be highly dependent on prior theory as,dwample, research on dark matter or dark energyeriV
controlled, laboratory experiments are routinelgikable, the hypothetical-deductive framework, withtop-down
strategy and focus on logical implication, has provo be very robust in fields such as atomic gsysir high-
energy physics.

For example, in 1957, two competing theories (hlgpsés) of weak interactions had two very diffesaduced
consequences — one that mirror-reflection or paytymetry is conserved and the other for whichtpasi not
conserved. A crucial experiment was carried out year by C. S. Wu and collaborators demonstratiag parity
symmetry was not conserved, which clearly falsitieel theory requiring parity symmetry (details luibtepisode are
provided in [4]).

As noted in Table 1, the hypothetical-deductivemieavork tends to be theory-driven and top-down (from
creatively-inferred hypotheses to deduced consemsgwith a focus on logical implication.

Hypothetical-inductive framework: Until the 1970s, early problems with the concepinduction contributed
to a nearly exclusive focus on the hypotheticalea¢ige framework in philosophy of science circlBgcent work
has recognized fundamental limitations with thianstard account of scientific process and has intred
hypothetical-inductive inference in addition to bypetical-deductive inference. In particuladjiniluoto and
Tuomela show how inductive and deductive inference renaairirreducible elements of the scientific proceéss [
and this recognition has led to new research indtide inference [e.g., 6, 7]. The hypotheticaltintive framework
adequately addresses scientific practice in maelgdithat lack controlled experiments but retaimedalance
between theory and observation.

For example, many quantitative space plasma stedigdoy a combination of plasma and field obseovetiand
single-particle, kinetic plasma or magnetohydrodgita(MHD) simulations, which are applied iteratiyeh a
theory-model-observation trialogue. Recent exampiekide the following: (1) Nonadiabatic accelepatiof ion
beams in the plasma sheet boundary layer have tteeronstrated using four-point in situ Cluster speafé
observations and single-particle model calculatif8]s (2) Successful correlations have recentlyrbegade of
observed changes in Earth’s ionospheric polar sapsponse to solar wind input parameters by cosgoas with
global MHD simulations of Earth’s magnetosphere [9]

As noted in Table 1, the hypothetical-inductiveniework maintains a rough balance of theory andrebatien
with a focus on causal implication.

Observational-inductive framework: See next three sections — four examples are prdvidthe section on the
observational-inductive framework.

TAKING DATA TO KNOWLEDGE

Space science research has faced many challentés thie past few decades: high-data-rate sensut<te
data explosion [10], the subtleties of plasmas endtiscale physical systems [11], and the complexitof
nonlinear systems [12]. In response, new technetodiave emerged that promise to meet these profound
challenges: Grid systems and virtual observatohesadband linkage of distributed data systems, adwhnced
visualization, among others [13, 14]. These nevirtetbgies can be represented by the Data-Sensoribtiel
linkages illustrated in Figure 1. Visualizing thas a tetrahedron with Data at the center (or topphasizes the
importance of data and new data grids for meetiegdiata explosion; turning it over on another gidees Sensor
in the middle and points to new Sensor Webs beagloped in Earth systems science; putting higfopaance



computing (HPC) in the center indicates the powleGid computing; and placing Model in the middlancbe
associated with virtual modeling centers [15].

(ing Data
Knowledyge

Figure 1. Data-Sensor-HPC-Model as a unifying cphé@r Grid systems, virtual observatories, andtel developments.

In the late 200 century, breakthroughs in nonlinear dynamics eetrigom the HPC-Model linkage with the
advent of new supercomputer resources. Consideriinwhe broader perspective of Data-Sensor-HPGléllo
linkages, Grid systems and virtual observatoriey hwve a similar transformative impact well beyahdir initial
role to expand access to data and computing resewed to enhance analysis tools across distritdatbases
worldwide.

KNOWLEDGE DISCOVERY IN DATABASES

In parallel with the increased synergism of Datas®e-HPC-Model, there have been major advancesta d
mining, neural networks, pattern recognition, ahisty, principal component analysis, Bayesion netaioMarkov
models and other tools, which are here referrezbtiectively as Knowledge Discovery in DatabaseBI[H. KDD
is particularly useful for the discovery of hiddestationships in large, complex databases thaegared the limits
of human pattern recognition or even model appboatknowledge discovery denotes “the nontrivialragtion of
implicit, previously unknown, and potentially uskiitformation” [16].

Data selection, automating access through regstiianslation and formatting are just a few of theny data
preparation steps that are essential for succekK&dlll applications, which can take up to 80% of aaed@aining
project [17]. With such preparation and with su#fittly robust data sets, however, previously hidféets can be
discovered such as specific rare events, anomadciien, patterns, correlations, linkages, comptaxti-variable
interdependencies and more [18]. Emergence of nterriational Virtual Observatory (IVO) [19] and ethnew
venues for data access provide important new oppities for applying KDD tools.

OBSERVATIONAL-INDUCTIVE FRAMEWORK

The observational-inductive framework is emergingnf the confluence of both KDD and Data-Sensor-HPC-
Model linkages, as described above. This framevi®rspecially needed in those fields such as gesighyand
space science where direct testing of certainainitbonditions or core hypotheses is difficult, dtnmpossible, but
where gigabyte to petabyte datasets are rapidharekpg. As noted in Table 1, the observational-atishe
framework is observations-driven and bottom-upr{frobservations to inductively-inferred hypotheseith testing
via deduced consequences) with a focus on caugdtation.

Four examples of the Observational-Inductive Framework: (1) A KDD study using spatial-temporal Earth
science data across multiple domains with multipiee lags has discovered correlations and unexgeetent
associations in human activity, the rise of atmesjghcarbon dioxide, decreases in global leaf coard natural
disasters [20](2) Another study using association mining discovgratierns in spatial-temporal data that correctly
predicts El Nino events [21]. In these two KDD sas] both by the same NASA Ames research team, the
correlations and associations discovered came faappmlying KDD directly to the data and not fronsgecific test
about some previously predicted effect (as in tpothetical-deductive approach) or from parametarches
linked to known hypotheses (as for the hypothetiicdiictive approach), except for some data prejmarauch as
making the data “deseasonalize@3) Through extensive dataset preparations for diagrspsclassification, and
spectra, extensive searches of large Two MicrorSAll Survey (2MASS) datasets have been carriedeading to



the discovery of T dwarf stars. Search criteria e iteratively from KDD analyses and only patyigrom
model-inspired parameter ranges (as for the hypotiénductive approach), and not by a focus oentifying
particular stars with specific characteristics jicttl by theory (as for the hypothetical-deductypproach). Using
searches based on spectral correlations, thisrdatimg procedure has now yielded more than 50 eéhstars,
which are the coldest and most intrinsically fabrown dwarfs [22].(4) An iterative data mining method
substantially reduces the number of calculatioredad to reach a given predictive accuracghrinitio quantum
mechanical calculations for inferring propertiebodad classes of materials. This example utiliheshypothetical-
deductive approach with respect to particaarinitio quantum calculations, but focuses on applying daitang
methods to order candidate structures for new ghlassibilities. Such KDD-boosted data analysis el@sed the
number of required calculations by a factor of faumbtaining successful crystal structure predittfor binary
alloys [23]. These four cases represent nascemy@ea of the observational-inductive framework heseathey are,
at least in part, observations-driven, bottom-upgd #ocused on causal implication (see Table 1)uiinothe
application of both KDD tools and linkages of D&ansor-HPC-Model.

All three frameworks of scientific methodology dissed here benefit from the best ideals of thentsfie
process, which include systematic examination @spppositions, framing of testable hypothesesifiiée in
principle), model development (preferably quanitig)t and careful design of observational testsougih KDD
embodies certain assumptions with regard to dawvarce, etc., these are transparent. Unlike thbasgd
assumptions imbedded in many research activiti®f) lissumptions must be fully explicated in ordedésign and
use KDD tools. Many KDD tools can help to reducis theory dependence. The hypothetical-deductidaftive
and observational-inductive frameworks are compleary and synergistic; however, reduction in theory
dependence through applying observational-indudtiference may be especially valuable in resohsoggntific
controversies in fields such as cosmology. Datgseteiding for new tests of cosmological theories hecoming
available, such as the Sloan Digital Sky Survey lange redshift Hubble datasets. In addition, nempguter and
data-intensive Grid systems are bringing thesesdtao researchers worldwide [19].
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