Memorandum 2

King et al.’s advice bounded and/or asymmetrical variables are transformed to approximate unbounded or, at least more symmetrical, variables before imputation. After imputation the transformations are inverted. Integer-valued variables are either rounded to the nearest integer or, in some cases, the inverted value is used to set the probabilities of a uniform bivariate random distribution from which the imputed value is drawn. The transformations for each variable are described below, where \(x \) is the original variable and \(t \) is the transformed variable. The operator \(\log(\cdot) \) refers to the natural logarithm. Variable numbers refer to column A in the table of variable definitions in Appendix 3.

A. Transformation: \(t = \log\left(\frac{x + 0.1}{1.01 - x}\right) \).
 Inverse transformation: Rounds to nearest integer, except 12 [drawn from random distribution].
 Variables: 1, 3, 4, 5, 7, 8, 12, 23, 25, 26, 27, 29, 30, 31, 34, 35, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 55, 64.

B. Transformation: \(t = \log\left(\frac{x/n + 1/(2n)}{1 + 1/(2n) - (x/n)}\right) \), where \(n \) is the maximum value of a 0 to \(n \) scale.
 Inverse transformation: Rounds to nearest integer.
 Variables: 2, 21, 22, 24.

C. Transformation: \(t = \log(x) \).
 Variables: 6, 9, 13, 14, 15 [\(x \) is replaced by \(1 + x \)], 16, 17, 18, 28, 60, 62.

D. Transformation: \(t = \sqrt{x} \).
 Variables: 32, 33.

Transformations A and B are logit transformations with Cox’s modification to allow for the fact the logit is not defined at the endpoints on the 0-1 interval (see Amemiya 1985, pp. 277-278). Once passed through the inverse transformation, imputed variables may sometimes lie outside the endpoints of the original scale. In these cases, the imputed variable is set to the nearest endpoint.