Pathways to Extracurricular Participation and Academic Success among Underrepresented Minority College Students

This research adds to the diversity and inclusion efforts of California State University, Sacramento’s (CSUS) by investigating the various factors that promote extracurricular activity involvement (i.e., in sports, honor societies, or fraternities/sororities) among underrepresented minority (URM) college students, as well as how these activities can promote academic engagement and performance. While the student body at CSUS is racially diverse, URM students are less likely to graduate in six years than their peers (Graduation Initiative Report, 2011). Although current efforts by the Graduation Initiative have taken steps to close the achievement gap by increasing academic support and fostering a welcoming campus community, among other measures, one area that appears to be relatively unexplored is the role of extracurricular activities (e.g., Webber, Krylow, & Zhang, 2013). In the current study, we (Co-PI: Kathryn Clifford) aim to better understand the predictors and outcomes of extracurricular activity involvement among URM students at CSUS.

This research makes several contributions to current understanding of college students’ extracurricular involvement. First, this study is one of few to assess multiple dimensions of extracurricular involvement. Particularly, we are interested in the difference between traditional measures of the quantity of involvement (e.g., whether or not one participates, or the number of activities in which one is involved; Elkins, Forrester, & Noel-Elkins, 2011) and relatively novel measures of the quality of involvement (e.g., identification with activity as meaningful and important to self-definition; Luhtanen & Crocker, 1992). Thus, we differentiate between extracurricular participation and identification in our research questions and analyses. Second, we test an array of predictors of extracurricular involvement that operate both in- and out-of-campus, including demographic (e.g., URM status), situational (e.g., out-of-school responsibilities), and activity-related (e.g., time spent in extracurricular activity) factors, and multiple dimensions of academic engagement that may have unique predictors. Third, CSUS is diverse in many respects, such as by URM status, transfer status, commuting to campus, and age. Less is known about extracurricular involvement at highly diverse universities.

Project Objective and Research Questions

The main objective of this project is to better understand the association between extracurricular involvement and academic success among CSUS students, particularly those who are from URM backgrounds. To achieve this objective, this project has four main research questions:

Research Question 1: What demographic or situational factors are associated with extracurricular participation among CSUS students?

Research Question 2: In turn, how is extracurricular participation linked with academic engagement and performance?

Research Question 3: What demographic, situational, or activity-related factors are associated with extracurricular identification among CSUS students?

Research Question 4: Does identification with one’s activity heighten associations between extracurricular involvement and academic outcomes?
For each of these questions, both main effects and interactions by URM status are tested to better understand extracurricular involvement in general and across the different demographic groups.

Project Description

Participants

The sample was comprised of 298 college students at CSUS. Based on self-report data, the sample (78.5% female) was 26.2% Mexican/Mexican-American (n = 78), 23.8% White/Caucasian-American (n = 71), 11.1% Southeast Asian-American (n = 33), 5.7% East Asian-American (n = 17), 4.7% Pacific Islander (n = 14), 3.7% Latino (non-Mexican origin; n = 11), 3.4% Black/African-American (n = 10), 3.4% South Asian-American (n = 10), 1.0% Middle Eastern (n = 3), 0.3% American Indian (n = 1), with an additional 13.1% classifying themselves as Other/Multiethnic (n = 39) and 3.7% missing data (n = 11). Given our main questions, students were classified as either underrepresented minorities (URM) or not (non-URM). Consistent with the University’s definition of URM status, URM students were those self-reporting as American Indian, Black/African-American, Latino, Mexican/Mexican-American, or Pacific Islander (n = 114; 38.3% of sample), whereas non-URM students were comprised of all other groups.

Procedure

Students were included in the Psychology subject pool as part of lower or upper division Psychology courses, and were given course or extra credit for their participation in our study. Campus Institutional Review Board approval was obtained prior to recruitment. Students filled out a paper packet of survey measures individually in a room with a maximum of 20 students during each one-hour session. Trained researchers (i.e., graduate or undergraduate research assistants) were present to address any questions.

Measures

Extracurricular participation. Students were asked to list all of the university-based clubs they have participated in during the 2014-2015 academic year. Based on these lists, we created two variables reflecting (1) whether or not they were involved in at least one activity and (2) breadth of participation, or the number of activities in which one was involved. In this sample, 36.6% were involved in at least one activity, and averaged .54 activities (SD = .88). Of the activities listed, 28.5% were categorized as sports/recreation, 18.4% fraternities/sororities, 14.6% cultural (e.g., Asian Student Association), 12.7% departmental/professional (e.g., Pre-dental Association), 8.9% campus programs (e.g., First Year Experience), 7.6% special interest (e.g., Animation Appreciation Club), 7.0% service, and 2.5% religious. For subsequent analyses, sports/recreation, fraternities/sororities and all other activities were grouped to use as a covariate.

Extracurricular identification. Those students who were involved in at least one extracurricular activity (n = 109) were prompted to select the one activity in which they spend the most time on average, and responded to a battery of questions regarding this activity. To measure positivity towards one’s social identity as a member of their extracurricular activity, sixteen items were adapted from the Collective Self-esteem Scale (Luhtanen & Crocker, 1992). An example item was “In general, belonging to this activity is
important to my self-image.” Each item was rated on a five-point Likert scale (1 = Strongly Disagree to 5 = Strongly Agree; α = .89).

**Predictors of extracurricular involvement.** Demographic, situational, and activity-related predictors were assessed. Demographic predictors included questions about one’s background, as well as about their status as a student at CSUS. Situational predictors were defined as out-of-school responsibilities, and included measures of obligations to the family and hours spent working. Activity-related predictors were used to predict extracurricular identification only, and included the perceived degree of interdependence of members of the activity, whether one held a leadership role, number of hours per week, number of semesters involved, and the proportion of activity members who are one’s friends.

**Demographic predictors.** Students responded to a battery of demographic items, including questions about age, ethnic group, and gender. Students also responded to several items regarding their college experience, including whether one is a transfer student (yes or no), class level (freshman, sophomore, junior, senior, or super senior), and whether one lives on campus (yes or no).

**Situational predictors.** Items measuring family obligations consisted of three subscales tapping current assistance, respect for one’s family, and expectations for future support (Fuligni & Pedersen, 2002). *Current assistance* was measured as the average of 11 items with the prompt of: “How often are you expected to do the following things?” (e.g., “Spend time at home with your family”; 1 = Never/Not Applicable to 5 = Always; α = .89). *Respect for one’s family* consisted of the average of seven items with the prompt of: “How important are the following items?” (e.g., “Treat your parents with great respect”; 1 = Definitely Not Important/Not Applicable to 5 = Definitely Important; α = .78). Using the same prompt and rating scale, *future support* was defined as the average of six items (e.g., “Help your parents financially in the future”; α = .74). In addition to these items, students reported on the number of hours per week they spend working.

**Activity-related predictors.** Regarding their one activity in which they spent the most time, students rated six items reflecting the degree of interdependence of members of their activity on a five-point Likert scale (e.g., “In my activity, the things other activity members want to accomplish and the things I want to accomplish are compatible”; 1 = Strongly Disagree to 5 = Strongly Agree; α = .71; Van Der Vegt, Emans, & Van De Vliert, 1998). Students also responded to a series of items indicating whether or not they held a leadership role (yes or no; M = .29, SD = .46), the number of hours per week they participated on average (i.e., intensity of involvement; M = 3.98, SD = 3.03), how many semesters they had participated (i.e., duration of involvement; M = 1.80, SD = 1.05), and the estimated proportion of members of their activity who were their friends (M = .41, SD = .37).

**Outcomes of extracurricular involvement.** Students self-reported their engagement in school on a four-point Likert scale (1 = Never to 4 = Very Often; Porter & Pryor, 2007). Three subscales measured student/faculty interaction, academic challenge, and active and collaborative learning. *Student/faculty interaction* consisted of the average of five items (e.g., “Discussed your career plans and ambitions with a faculty member”; α = .76). *Academic challenge* was measured using eight items (e.g., “Worked harder than you thought you could to meet the instructor’s standards or expectations”; α = .72). *Active and collaborative learning* consisted of five items (e.g., “Worked on a class assignment, project, or presentation with other students”; α = .72). Students also self-reported their grade point average at CSUS.
Results

The results section consists of two main parts. The first section focuses on the predictors and outcomes of extracurricular participation, and the second section on extracurricular identification. For each set of analyses, main effects and interactions by URM status were tested.

Extracurricular Participation

Predictors. Demographic and situational predictors of whether or not students were involved in activities were tested using stepwise logistic regression models. The first model entered demographic variables, including gender, URM status, age, transfer status, class level, and living on campus. None of these variables were significant predictors of extracurricular participation. The second model tested how out-of-campus responsibilities, namely family obligations and hours per week spent working, predict extracurricular participation. For every hour spent working off-campus, the odds of participating in activities decreased by 3% ($b = -.03, SE = .01, p = .02$). Family obligations were unrelated to whether or not students were involved in activities, and interactions by URM status were not significant.

Stepwise regression models also examined the predictors of breadth of participation, defined as the number of activities in which one is involved. In addition to a similar (albeit small) association of the number of hours per week spent working and breadth of participation ($b = -.01, SE = .09, p = .03$), lower current assistance to the family was associated with a greater number of activities in which one was involved ($b = -.12, SE = .11, p = .05$). Interactions by URM status were not significant, suggesting that these effects were similar across all students in our sample.

Outcomes. Controlling for age, gender, class level, transfer status, and living on campus, regression models investigated the link between extracurricular participation and academic outcomes. Analyses revealed a significant interaction of URM status and extracurricular participation on academic challenge ($b = .35, SE = .12, p = .004$), such that participating in activities was linked with greater academic challenge for URM students ($b = .24, SE = .10, p = .01$), but not for non-URM students ($b = -.11, SE = .08, p = .14$). A similar interaction was found for breadth of participation ($b = .16, SE = .07, p = .01$), where a higher breadth of participation was associated with greater challenge for URM students ($b = .12, SE = .05, p = .02$), but not for non-URM students ($b = -.05, SE = .04, p = .25$). These findings suggest that opportunities for skill-building in extracurricular settings (e.g., goal-setting) may increase the likelihood that students will seek out and undertake challenging academic tasks; such skills may be especially important for at-risk students. Models examining student/faculty interaction, active and collaborative learning, and grade point average did not reveal significant associations.

Extracurricular Identification

Predictors. Subsequent analyses tested the predictors of extracurricular identification. As before, we tested demographic and situational predictors. Because these analyses focused on a subset of our sample that participated in at least one activity ($n = 109$), our third model examined an additional set of activity-related predictors. Entering demographic factors first revealed that only class level predicted extracurricular identification, such that those who were freshmen or sophomores reported less identification with their activity than juniors and seniors, $b = .27, SE = .11, p = .02$. Second, out-of-campus responsibilities were entered in the model. Neither family obligations nor hours per week spent working were linked with extracurricular identification. Our third model tested variables describing the
nature of involvement (i.e., breadth, type of activity, leadership role, intensity, and duration) and peer interactions within the activity (i.e., friendships and degree of interdependence), in addition to those tested before. The perceived degree of interdependence of members of the activity ($b = .51, SE = .09, p < .001$) and proportion of activity members who are one’s friends ($b = .38, SE = .11, p = .001$) were associated with greater identification with one’s activity. These results suggest that when it comes to identification, one’s peer interactions in their activity may be most relevant to whether the activity becomes an important social identity. Interestingly, class level remained a predictor in the third model ($b = .19, SE = .10, p = .05$), suggesting that the difference between lower- and upper-class level students was not attributable to a longer duration of involvement or holding a leadership role.

**Outcomes.** Our main models tested how extracurricular identification is linked with academic outcomes, controlling for age, gender, class level, transfer status, living on campus, type of activity, leadership role, intensity of involvement, duration of involvement, friendships, and degree of interdependence in the activity. Regressions revealed a significant interaction of activity identification and URM status for active and collaborative learning ($b = .64, SE = .28, p = .02$). A greater degree of identification with one’s activity was associated with greater active and collaborative learning for URM students ($b = .48, SE = .23, p = .05$). This association was not significant for non-URM students ($b = .23, SE = .24, p = .35$). Feeling a sense of commonality and identity with a larger, school-oriented group, such as an extracurricular activity, may increase peer support for academics; as before, students at greatest risk may benefit the most from opportunities to connect with school-oriented peers.

In sum, extracurricular involvement was linked with greater academic engagement among URM students; however, specific associations depend on how involvement is measured (i.e., participation in versus identification with activity) and the type of academic engagement. Notably, these associations were significant among URM students, suggesting that contexts for skill building and connecting with school-oriented peers may be especially beneficial for at-risk students. Analyses investigating the predictors of involvement also suggested different factors related to participation versus identification, underscoring the importance of differentiating between these dimensions in future research.

This research holds implications for policy and practice. Given the benefits of extracurricular involvement for URM students in particular, ensuring that all students have the opportunity to get involved is crucial. Offering innovative ways in which members can engage with the activity (e.g., online meetings) may be a key to participation for non-traditional and commuter students. In addition to addressing barriers to participation, this research suggests ways in which activities can be structured to promote a sense of common identity. For instance, having a shared project requiring interdependence among members (e.g., planning and painting a mural with members of the Art Club) should promote extracurricular identification. Considering ways in which all students can participate and identify with activities is essential given our findings suggesting how activities are linked with academic engagement.

**Current Progress and Future Directions**

Funding from the Probationary Faculty Development Grant was used to print essential paper materials, including consent forms, surveys, and debriefing forms. During the Spring Semester, we collected, entered, and cleaned our data, and were able to present findings at the meeting of the Western Psychological Association (WPA) in April 2015. Eleven students were involved in important roles on this project, including literature reviews, data collection, data entry and coding, and generating hypotheses. We traveled to the WPA with a team of six of our students, who helped us to prepare and
present the poster. We are also attending the meeting of the American Psychological Association (APA) with three students in August 2015 to present on another set of analyses from this project.

Based on the analyses described above, we will submit for presentation at the meeting of the American Educational Research Association (AERA) and for a brief report in the *Journal of College Student Development* by the end of the summer. We will also collaborate with undergraduate and graduate students to submit to other conferences, such as the next meeting of the Western Psychological Association (WPA). I am optimistic that some of these analyses for conference presentations will also be submitted for publication. In addition to disseminating these findings through conference presentations and manuscripts, I plan to communicate our findings to campus leaders and explore ideas for future work that would be beneficial to the campus community. I am very appreciative of this funding because it has enabled me to remain current and productive during my first year at CSUS, and to begin building relationships with students, faculty, and campus leaders.
References


