Lab 7: Digital I/O and Counter/Timers

In the last experiment we will have a brief introduction to some of the digital input and output features of our data acquisition card. We’ll be using digital lines and ports for input and output as well as for timing synchronization.

For this experiment, we will NOT be using the ELVIS as our interface to the DAQ. The ELVIS actually uses digital lines for communicating with the ELVIS software. As such, the lines aren’t “passed through” like the analog channels. We’ll be using either an old-fashioned screw terminal interface on the ELVIS predecessor to make the connections. I’ve attached at the end of this document the “pin assignments” for the DAQ cards.

Digital I/O

As with most digital circuits, LabView handles digital logic using a TTL-compatible scheme, with ON represented by a nominal 5 V signal, and OFF by 0 V. On the software side, the digital signals can be represented by T/F or by 1/0. Typically, for a single state, you would use T/F, but if dealing with encoded or multiple data lines, the integer notation is better.

Digital signals are sometimes a single piece of data, but other times are patterns (think of the BCD encoded numbers from 115). For this reason, LabView allows you to set up things in two ways, with lines or ports.

A line is a single input, sort of like the analog channels that we’ve been dealing with all semester. A port, however, is a predefined grouping of lines, usually four or eight bits. To put it in computer science terms, a digital line handles a bit of data, but a port handles a byte (or word). The lines or ports can be configured to be either input or output. If you are entering a digital word, you need to remember that LabView will interpret the least-significant bit (LSB) is the rightmost in the grouping and that the MSB is leftmost.

As before, we’ll use the DAQ Assistant to define the task.

Your tasks for this experiment are listed below:

1. Build a VI that writes out a single bit to a line, this should be controlled by a push button.

2. Build a VI that reads a single digital state and lights up a virtual LED on your panel if the state is true.

3. Build a VI that writes out a word of data to a port and have a series of LEDs on a prototyping board light up to reflect the word.

4. Build a de-multiplexor – a VI that accepts a two bit word and then routes an analog measurement to one of four possible indicators.

Counter / Timer

In many experiments, you need to perform accurate timing or counting measurements. Multifunction data acquisition cards contain on them a high accuracy clock that can be used to take measurements.

A counter is a device that literally counts the rising edges of a digital pulse train (falling edges can also be configured). A timer is a device that counts the edges of a well defined clock signal. If the time base for the clock is well known, you can determine the elapsed time to within on period of the clock.

The DAQ has a built in “clock” that it uses for this process (although you can, in theory, import you own clock). A drawback is that this requires that you use digital signals – sometimes your data stream isn’t digital. In such a case, you’ll have to do some signal conditioning with a comparator to clean it up.

In all of these cases, you’ll have to do a little bit of reading the LabVIEW help to get things running – but you’re old hands at this now….

Your tasks:

1. Build a VI that can count a pulse train. Use the TTL output of a function generator as your signal.

2. Build a debounced switch on a prototyping board. Build a VI that will measure the time between two “pulses” that you provide.

[image: image1.emf]
Notes on connectors:

1. Remember that you’re acquiring analog data in differential mode. This means that you’ll be connecting inputs between pairs of AI inputs; the DAQ automatically does the subtraction. They are paired up as follows: 0-8, 1-9, 2-10, 3-11, 4-12, 5-13, 6-14, & 7-15.

2. The digital lines are organized by port number; the PCIe-6251 has three ports, 0, 1 and 2. Ports 1 and 2 can be used for regular digital I/O, but are also used for timing control. They are “doubly labeled” above, as PFI and Px.x. Remember that we used the PFI feature earlier as a digital trigger. I don’t really care which digital port you use.
