

Slide 2

The Structure of Nucleic Acids What are the nucleic acids monomers called? What are the nucleic acid polymers called?

-			
-	 	 	
-	 	 	
_	 		
-			
-	 	 	
_	 		
-			
-	 	 	
-	 	 	
_			
-			
-	 	 	
_	 	 	
-			
-	 	 	
-	 	 	
_			
-	 	 	

Slide 5

What DNA bases can pair up?
_____and ____
__and ____

and ____

How many DNA molecules do we have? _____

How many do bacteria have? _____

Slide 8

Slide 9

1953: Watson and Crick Publish the Structure of DNA

"It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying nechanism for the genetic material." Wastern and Crisk

One-page paper in the journal, Nature

- Structure of DNA suggests its function (DNA replication)

Slide 11

DNA Replication: A Closer Look

- The copying of DNA is remarkable in its speed and accuracy
- More than a dozen enzymes and other proteins participate in DNA replication

Commission C. 2008. Program Education Inc., multiplying as Pengago Benjamin Commission

Slide 14

Getting Started

- Replication begins at special sites called origins of replication, where the two DNA strands are separated, opening up a replication "bubble"
- A eukaryotic chromosome may have hundreds or even thousands of origins of replication
- Replication proceeds in both directions from each origin, until the entire molecule is copied

PLAY Animation: Origins of Replication

Slide 16

Slide 18

Leading Strand Synthesis

- DNA polymerases add nucleotides only to the free 3' end of a growing strand; therefore, a new DNA strand can elongate only in the 5' to 3' direction
- Along one template strand of DNA, the DNA polymerase synthesizes a leading strand continuously, moving toward the replication fork

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Slide 20

DNA polymerases $\underline{can't\ initiate\ synthesis}$ of a polynucleotide; they can only add nucleotides to the 3' end

- The initial nucleotide strand is a short RNA primer
- An enzyme called **primase** can start an RNA chain from scratch and adds RNA nucleotides one at a time using the parental DNA as a template
- The <u>primer</u> is short (5–10 nucleotides long), and the 3' end serves as the starting point for the new DNA strand

- Each nucleotide that is added to a growing DNA strand is a nucleoside triphosphate
- dATP supplies adenine to DNA and is similar to the ATP of energy metabolism
- The difference is in their sugars: dATP has deoxyribose while ATP has ribose
- As each monomer of dATP joins the DNA strand, it loses two phosphate groups as a molecule of pyrophosphate

Commists © 2008 Person Education Inc., multipline as Person Benjamin Commisso

Slide 23

Slide 24

Lagging Strand Synthesis

- To elongate the other new strand, called the lagging strand, DNA polymerase must work in the direction away from the replication fork
- The lagging strand is synthesized as a series of segments called **Okazaki fragments**, which are joined together by **DNA ligase**

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Slide 25

Slide 28

Slide 32

The DNA Replication Complex

- The proteins that participate in DNA replication form a large complex, a "DNA replication machine"
- The DNA replication machine is probably stationary during the replication process
- Recent studies support a model in which DNA polymerase molecules "reel in" parental DNA and "extrude" newly made daughter DNA molecules

PLAY Animation: DNA Replication Review

Converient © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cumming

Slide 35

Proofreading and Repairing DNA

- Replication has an error rate at ~1 in 100,000 nucleotides, but DNA polymerases proofread newly made DNA, replacing any incorrect nucleotides (only 1 in 10 billion errors occur following this process).
- In <u>mismatch repair</u> of DNA, repair enzymes correct errors in base pairing (usually just after replication)
- DNA can also be damaged by chemicals, radioactive emissions, X-rays, UV light, and certain molecules (in cigarette smoke for example)
- In <u>nucleotide excision repair</u>, a <u>nuclease</u> cuts out and replaces damaged stretches of DNA

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Replicating the Ends of DNA Molecules

- Limitations of DNA polymerase create problems for the linear DNA of eukaryotic chromosomes
- The usual replication machinery provides no way to complete the 5' ends of daughter DNA strands, so repeated rounds of replication produce shorter DNA molecules

Commists © 2008 Person Education Inc., multipline as Person Benjamin Commisso

Slide 38

- If chromosomes of germ cells became shorter in every cell cycle, essential genes would eventually be missing from the gametes they produce
- An enzyme called **telomerase** catalyzes the lengthening of telomeres in germ cells
- The shortening of telomeres might protect cells from cancerous growth by limiting the number of cell divisions
- There is evidence of telomerase activity in cancer cells, which may allow cancer cells to persist

Committee C 2008 Person Education Inc., multiplinary a Penson Benjamin Committee

Slide 41

Concept 16.3 A chromosome consists of a DNA molecule packed together with proteins

- In Postorio
- The chromosome is a double-stranded, circular DNA molecule associated with a small amount of protein
- the DNA is "supercoiled" and found in a region of the cell called the nucleoid
- In Eukaryotes:
 - chromosomes have linear DNA molecules associated with a large amount of protein
 - Chromatin is a complex of DNA and protein found in the nucleus of eukaryotic cells
 - Histones are proteins that are responsible for the first level of DNA packing in chromatin

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

DNA double helix (2 nm in diameter)	30	Nucleosome (10 mm in diameter)
DNA, the double helix	Histones Histones	Histone tail Nucleosomes, or "beads on a string" (10-nm fiber)

Slide 44

Chromatin is organized (packed) into fibers

- 10-nm fiber:
 DNA winds around histones to form nucleosome "beads"
 Nucleosomes are strung together like beads on a string by linker DNA

30-nm fiber

- Interactions between nucleosomes cause the thin fiber to coil or fold into this thicker fiber
- 300-nm fiber
 - The 30-nm fiber forms **looped domains** that attach to proteins
- Metaphase chromosome

 - The looped domains coil turtner
 The width of a chromatid is 700 nm

Slide 45

Chromatin undergoes changes in its degree of packing during the cell cycle - it is dynamic

- Most chromatin is loosely packed in the nucleus but condenses prior to cell division
- Loosely packed chromatin is called euchromatin
- Heterochromatin, or highly condensed chromatin is inaccessible to gene expression machinery
- Histones can undergo chemical modifications that result in changes in chromatin organization
 - For example, phosphorylation of a specific amino acid on a histone tail affects chromosomal behavior during meiosis
