our Name:	Key		Section:
Chemistry 31	- Quantitative Analysis Ex	xam #1, October 13, 200	Test Version #3
Multiple Choi Either circle th	ce and Short Answer ne one correct answer from the	ne choices listed, or enter	the correct term on the blank line.
(4 points).	In aqueous solution the sum	of the pH and pOH is eq	ual to:
	a. 1×10^{14} c. 1×10^{-14} b. 1^{2} d. 0	to show your work, com abow all of your work as units. Unless otherwise r	
2 (4 points).	What is the pH of a solution	containing 1x10 ⁻⁵ M NaC	H?:
	a. 5c. impossible to determine	(b.) 9 d. 7	
3 (4 points).	calculation?	7 1076 15 1101 107	gnificant figures to the following $/.2 \times /0^{-4}$
		$7 \times 10^{-4} \times 45) + 1.24 \times 10^{-3}$ c. 1.360×10^{-3} d. 1×10^{-3}	
4 (4 points).	An ore sample contains 3.67 the relative uncertainty expr	35g of gold with an absorbessed in parts per million	solute uncertainty of 0.2mg. What is $\frac{1}{2}$? ($1g = 10^3$ mg) $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
(a. 5x10 ⁴ ppm b. 50ppm	d. 20ppm c. 5x10 ⁻⁵ ppm	$\frac{0.2^{4}}{3.6735 \times 10^{3}} \times 10^{6} = 50$
5 (4 points).	Which solution has the high	est concentration of hyd	oxide [OH] ion?
2 points). Si	b. 0.10M solution of weak c. 0.10M solution of weak d. Cannot determine from the control of the	acid with $pK_a = 3$ base with $pK_b = 9$	reblem thrown out
6 (4 points).	The major cause of experim	nental imprecision is ra	ndom errors.
		071	includerminate tribution, the probability that an

additional data point will fall between $\pm 2\sigma$ (standard deviations) from μ (the mean) is 95.5%. For a data set with $\mu = 48.63$ and $\sigma = 0.07$, what is the chance that an additional data point will have a value greater than 48.77?

a. 4.5% d. 47.75% b. 50% c. 2.25%

- 8 (4 points). Complex ion formation becomes an important effect at (a) lower or (b) higher ion concentrations relative to common ion effects? (circle a or b)
- 9 (4 points). A narrow Gaussian distribution indicates experimental data with a more or (b) less precision than a comparatively wider Gaussian distribution? (circle a or b)

Worked out Problems

It is your responsibility to work out your answers clearly. Unclear, or unreadable work will not be graded. If there is not enough space provided to show your work, continue on the back of the page and clearly mark the problem number. Be sure to show all of your work and report your final answer with the correct number of significant figures and units. Unless otherwise noted, an unreasonable number of significant figures in a final answer will be marked off 2 points. A correct answer without work shown will not receive credit. Circle or draw a box around your final answer.

10 (12 points). Given the following information:

$$C_{6}H_{4}(O)CO_{2(aq)}^{2-} + H_{2}O_{(1)} \xleftarrow{K_{b1}} C_{6}H_{4}(OH)CO_{2(aq)}^{-} + OH_{(aq)}^{-}; pK_{b1} = 11.03$$

$$C_{6}H_{4}(OH)CO_{2(aq)}^{-} + H_{2}O_{(1)} \xleftarrow{K_{b2}} C_{6}H_{4}(OH)CO_{2}H_{(aq)} + OH_{(aq)}^{-}; pK_{b2} = 1.3$$
Should be surfaced

Give the correct balanced chemical reaction and equilibrium expression for when the acid C₆H₄(OH)CO₂H is added to pure water. Only consider the dissociation of the first proton.

11 (12 points). Determine the solubility (reported in moles/L) of $Ag_4Fe(CN)_{6(s)}$ in pure water if $K_{sp} = 8.5 \times 10^{-45}$ and:

12 (12 points). Calculate the following and report the answer with the absolute uncertainty (use the correct number of significant figures for full credit). Uncertainties given below are absolute.

$$\frac{\left(\frac{[4.97(\pm0.05)-1.86(\pm0.03)]+6.01(\pm0.04)}{21.2(\pm0.2)}\right)^{2}}{21.2(\pm0.2)}$$

where the interior of the property of the pr

13 (12 points). What is $[SCN_{(aq)}]$ if we saturate a solution of $3.56 \times 10^{-3} M \ Hg^{2+}$ with $Hg(SCN)_{2(s)}$?

$$H_{9}(SCN)_{2(S)} = H_{3(98)}^{24} + 2SCN_{69}$$

$$[SCN]^{2}[H_{g}^{24}] = Z.8 \times 10^{-20}$$

$$H_{9}^{24} SCN^{-}$$

$$[2x)^{2}(3.56 \times 10^{-3} + x) = 2.8 \times 10^{-20}$$

$$C + x + 2x$$

$$1.42 \times 10^{-2} x^{2} = 2.8 \times 10^{-26}$$

$$E = 3.56 \times 10^{-3} + x = 2x$$

$$X = 1.4 \times 10^{-9}$$

$$SCN^{-} = 2x = 2.8 \times 10^{-9}M$$

14 (16 points). In a Kjeldahl titration, organic nitrogen is digested in sulfuric acid to convert all organic N into NH₄⁺. The NH₄⁺ is then converted into ammonia gas (NH_{3(g)}) and the ammonia gas is bubbled into a known volume of HCl with a known molarity.

$$NH_{3(g)} + H_{(aq)}^+ \longrightarrow NH_{4(aq)}^+$$

Any left over H⁺_(aq) is then back titrated to the equivalence point by a known concentration of OH (aq).

$$OH_{(aq)}^- + H_{(aq)}^+ \longrightarrow H_2O_{(i)}$$

The Kjeldahl procedure was used to analyze a sample containing 9.70 mg of protein. The liberated NH₃ was collected in 5.00mL of 0.0336M HCl. The remaining acid required 6.34mL of 0.010 M NaOH for complete titration. What is the weight percent of nitrogen in the protein? (the molecular weight of nitrogen is 14.01 g/mole)

moles H+ added in farmard thation:

5.00 ml 10.0336 mmol 1 0.168

Incl

1 ml

0.168

0.168

0.168

6.34 ml 10.010 mmol 1 - 0.063 mmol

1 ml

0-105 menual H+ [1 menual DH3 | menual N | 14.01 mig N | = 1.47 mig N

1.47 mg x 100 = [15,170]