
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Lecture Overview | 」 |
| :---: | :---: |
| Introduction |  |
| - Scales of Measurement <br> - Frequency Distribution <br> - Measures of Central Tendency <br> - Measures of Variability <br> - The Normal Curve <br> - Norming a Test |  |
|  | 6 |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$ individuals within a standardization sample.

- For example, they document how well the $\qquad$ standardization sample's 6 -year-olds did on the WISC Information subtest. $\qquad$

What does - " a test is only as good as its standardization sample" mean?
$\left.\begin{array}{|lll|}\hline \text { Introduction: Why use derived scores }\end{array}\right]$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
scores also provide comparable measures tha allow direct comparison of a student's performance on rent tests. Thus, allowing the psychologist to identify

For example a Scaled Score of 10 on the Information Subtest (RS =5) can be directly compared to a Scaled Score of 3 on the Coding Subtest (RS =5).
$\qquad$
$\qquad$
$\qquad$
$\qquad$
 mandin ans $\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Lecture Overview |  |
| :---: | :---: |
| - Introduction |  |
| Scales of Measurement |  |
| - Frequency Distribution <br> - Measures of Central Tendency <br> - Measures of Variability <br> - The Normal Curve <br> - Norming a Test |  |
|  |  |

$\qquad$
Ure Over
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$ ChLl:ORMIA Sym $\qquad$

| Lecture Overview |  |
| :---: | :---: |
| - Introduction <br> - Scales of Measurement |  |
| Frequency Distribution |  |
| - Measures of Central Tendency <br> - Measures of Variability <br> - The Normal Curve <br> - Norming a Test |  |
|  | 8 |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## [Measures of Central Tendency $]$ <br> Mode

Determined by looking at a set of scores and seeing which occurs most frequently.
Only appropriate statistic for nominal data.
$\qquad$

- Median
- The point above and below which $50 \%$ of the scores $\qquad$ are found.
$\qquad$
Mean
- The arithmetic average of the scores

Appropriate for use when the data is interval or ratio.
ChLlioninis num
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
 $\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## [Range and Standard Deviation]

- While range does give us information about the dispersion of scores, its is of limited usefulness.
- The most common measure of dispersion is the standard deviation (SD) and is required to obtain derived scores.
- An example..
- A test developer is interested in standardizing a measure of Arithmetic for 6-0 year olds. To do this she collects data for 20 carefully selected children.
Results were as follows:


## ChLIVORMIA Sum

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| [Range and Standard Deviation |  |  |  |
| :---: | :---: | :---: | :---: |
| Subject | Raw Score | Subject | Raw Score |
| - 1 | 64 | 11 | 60 |
| 2 | 48 | 12 | 43 |
| 3 | 55 | 13 | 67 |
| 4 | 68 | 14 | 70 |
| 5 | 72 | 15 | 65 |
| 6 | 59 | 16 | 55 |
| 7 | 57 | 17 | 56 |
| 8 | 61 | 18 | 64 |
| 9 | 63 | 19 | 61 |
| 10 | 60 | 20 | 60 |
| CALH: | tram |  | 5 |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## [Standard Deviation

Divide the value obtained in step 4 by $\mathrm{N}-1$ (in this example, it would be 20-1)* The resultant value is called the variance.
$931 \div 19=49$
6. Take the square root of the value obtained in step 5 . This value is the standard deviation.

- $\sqrt{49}=7$

Mean $=60.4$; Standard Deviation $=7$, with this information raw scores can be onverted into derived or standard scores. These scores express how many standard deviations a given raw score lies above or below the mean of the distribution. * Dividing by " $\mathrm{n}-1$ " yields the unbiased estimate of the of the population variance rather than the actual variance of the sample. If the actual sample variance is desired (or your scores reflect performance of a ChLI:ORMI Smi
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| [Using Derived (or Standard) Scores] |
| :---: |
| - You are now using the Information and Arithmetic tests that have just been developed. The 6 -year- old student you are testing obtains a Arithmetic Test raw score of 67 and a Information Test raw score of 3 . <br> - How will you know what these two scores mean relative to the standardization sample and relative to the student himself (i.e., do either scores represent individual strengths or weaknesses)? <br> - The answer is to transform them into standard scores. |
|  |

$\qquad$
$\qquad$ tests that have just been developed. The 6 -yearold student you are testing obtains a Arithmetic score of 3 .

- How will you know what these two scores mean relative to the standardization sample and relative to the student himself (i.e., do either scores represent individual strengths or weaknesses)?
$\qquad$
The answer is to transform them into standard

ChLl:ORHA Smi
minan are c


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
 $\qquad$

$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Interpretation

What if ...

- Arithmetic RS $=57$
- Information RS = 10
- First obtain the z-scores
$\frac{X-\text { Mean }}{s d}=Z$
- Then convert them to scaled scores
$\qquad$ SS $=$ Mean $_{\text {ss }}+\left(S_{s s}\right)(z)$
- Finally, make an interpretation of these data. CALIFORM5
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
- All of these computations take a lot of time so test developers typically $\qquad$ develop norm tables that take a given raw score and tell you what the $\qquad$ corresponding derived score is.
- For example... $\qquad$
$\qquad$


## 

 ditancty
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
[Variability and the Normal Curve]

- When population scores on a particular characteristic are graphed, the shape of the "normal curve" resembles a bell.
- The majority of scores fall in the middle (near the mean), and a few scores fall at the extreme ends of the curve.
- Extreme scores are very unusual!!!
- The height of a "normal curve" will be determined by the variability of the scores.

[^0]$\qquad$

$\qquad$

If a variable is normally distributed it falls in a normal or bell shaped curve.

Characteristics
$\qquad$

- 50\% of scores are above/below the mean
ean, median, mode have the same value (a for looking at all three) are away from the mean.
The same number of scores are found + and $-a$ standard deviation from the mean.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## The Use of Descriptive Statistics in Norming a Test

$\qquad$

The following is a very a basic and simplified description of $\qquad$ how descriptive statistics are used in the development of a norm referenced test.
These tests compare the performance of student you are
$\qquad$ testing to the performance of children in a standardization sample (How are they different from criterion referenced tests?). $\qquad$ The standardization sample provides an estimate of the performance of a population.
Thus, the obtained test score gives you an idea of how well a
$\qquad$ student did on a given test relative to a specific population (by comparing your testing subject to the standardization sample's performance).

```
C&L!ORMA smam
```


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


A test developer wants to construct a test that estimates the how individuals within a population perform in the area of short term auditory memory for numbers.
Memory for Numbers Test

## Directions


$\qquad$


The Use of Descriptive
Statistics in Norming a Test
4. Raw scores from the sample are used to estimate the average (mean or $\bar{X}$ ) performance of the population's 6-year-olds on the MNT.
The sum or all raw scores (or $\sum X$ ) is obtained and divided by the number of children who took the test (sample size or $N$ ).

$$
\bar{X}=\frac{\sum X}{N}
$$

## The Use of Descriptive Statistics in Norming a Test

$\qquad$
5. The test developer now knows the average $\qquad$ score (let's pretend it is a raw score of $5=X$ ) of this sample (and now has an estimate of the $\qquad$ population's typical performance).

- In other words, she now knows exactly how to describe the performance of children who obtain a raw score of 5 (these children are "average," their score falls at the $50^{\text {th }}$ percentile rank).
- She also knows that raw scores above 5 are above average and scores below 5 are below average. But exactly how far above average is a raw score of 7 ?? CALIORMA Smu


## The Use of Descriptive Statistics in Norming a Test

5. To determine exactly how far above or below average (or the mean) any other given raw score was, the test developer will need to determine how spread apart the scores of the sample are. In other words, she will need to determine how different the scores are from one another. Are they all very similar to each other (homogeneous) or are the all very different from each other (heterogeneous)? What descriptive statistic will answer this question?
ChLI:ORMA Sum
$\qquad$ srent and

| $\left[\begin{array}{l}\text { The Use of Descriptive } \\ \text { Statistics in Norming a Test }\end{array}\right]$ |
| :--- |
| 7. With knowledge of the mean (e.g., 5) and |
| standard deviation (let's pretend it is 1.8) of |
| the sample's performance on the test we |
| can determine exactly how far from the |
| mean a given raw score is. |
| What descriptive statistic do we need to do |
| this? |

$\left[\begin{array}{l}\text { The Use of Descriptive } \\ \text { Statistics in Norming a Test }\end{array}\right]$


## The Use of Descriptive <br> Statistics in Norming a Test

The test developer does not like the fact that Z-scores make use of " + " and "-" signs (as the can easily be missed). She would also like to get ride of decimal points. Thus, she transforms the Z-Scores into Scaled Scores $\qquad$
$\mathrm{SS}=$ Mean $_{\mathrm{ss}}+\left(\mathrm{S}_{\mathrm{ss}}\right)(z)$

- Scaled Score = 10 + 3(z) $\qquad$
- MNT RS of $7,10+3(1.111)=13.333(7=13)$
- Develop a norm table for MNT Raw scores $\qquad$ Compute Z-scores for each raw score

2. Transform the Z-Scores to Scaled Scores

[^1]$\qquad$

| $\left[\begin{array}{l}\text { The Use of Descriptive } \\ \text { Statistics in Norming a Test }\end{array}\right]$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Raw score | \|scaled Score | \|Raw score | Scaled Score |
| 0 |  | ${ }^{6}$ |  |
| 1 |  | 7 | 13 |
| 2 |  | 8 |  |
| 3 |  | 9 |  |
| 4 |  | 10 |  |
| 5 | 10 | 11-16 |  |
|  |  |  |  |


| The Use of Descriptive Statistics in Norming a Test |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| First we need to know how far is each raw score from the sample's mean of 5 ? |  |  |  |  |
| Raw score | 2.score | Raw Score | [2.scol |  |
| 0 | $-2.77$ | 6 | +0.555 |  |
| 1 | -2.22 | 7 | +1.111 |  |
| 2 | -1.666 | 8 | +1.6 |  |
| 3 | -1.111 | 9 | +2222 |  |
| 4 | -0.555 | 10.16 | +2.777 |  |
| 5 | 0 |  |  |  |
| $z=\frac{s c}{s}$ |  | - |  |  |
|  |  |  |  |  |

$\qquad$

$\qquad$

| The Use of Descriptive Statistics in Norming a Test |  |  |  |
| :---: | :---: | :---: | :---: |
| Raw Score | Scalded So | Paw score |  |
| 0 | 2 | 6 | 12 |
| 1 | 3 | 7 | 13 |
| 2 | 5 | 8 | 15 |
| 3 | 7 | 9 | 17 |
| 4 | 8 | 10-16 | 18 |
| 5 | 10 |  |  |
|  |  |  | 4, |


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


[^0]:    CALIORH:

[^1]:    ChLI:ORMA sim

