Outline
- Types of test scores and what they mean
 - Raw Scores
 - Developmental (Age/Grade) Scores
 - Rank Scores
 - Standard Scores
 - Criterion Referenced Scores
- Standard error of measurement
- Activity

Raw Scores
- The number of correctly answered test items.
- Limits to interpretation?
 - Cannot be compared to other individuals (normative groups)
 - Cannot be compared to other test scores (relative strengths and weaknesses)
- Can show small changes over time
Developmental Scores

- Scores based on performance of others.
- Translates raw scores into age or grade equivalents.
 - Requires knowing the average raw score of children at different ages or grade levels.
 - Tells you that the child performs as well on the test as did the average _N_ year-old/grader who took the test.

Strength
- Easy to understand

Weaknesses
- Misleading
 - Is not the same as actually being at a given grade/age level.

“Steve obtained a math fact grade score of 6.9 (end of the sixth grade) on the WJIII. This means that even though he is in the 4th grade, he is ready for 7th grade math.”

True or False? Discuss. Interpret 6.9.
Rank Scores

Scores based on performance of others.

Percentile
- The most commonly used rank score
- The percentage of persons in the standardization sample who fall below a given raw score
 - You can’t have a percentile score of 100 as you can exceed your own score
- Scores of students are arranged in rank order from lowest to highest
- The scores are divided into 100 groups.

Percentile Strength
- Easy to understand

Percentile Weakness
- Unequal units, especially at the extreme ends of the distribution.

Decile ranks (“Deca” means “ten”)
- Scores of students are arranged in rank order from lowest to highest.
- Scores are divided into 10 groups or bands (instead of 100 as with percentiles).

Quartile ranks
- Scores of students are arranged in rank order from lowest to highest.
- Scores are divided into 4 equally sized groups or bands (instead of 10 as with deciles or 100 as with percentiles)
Rank Scores

- **Stanine**
 - Ranks scores into 9 bands within which fixed percentages of scores fall
 - 1, 2, 3 = below average
 - 4, 5, 6 = average
 - 7, 8, 9 = above average

Rank Scores

- **Normal Curve Equivalent**
 - Measures where a student falls along the normal curve.
 - Numbers on the NCE line run from 1 to 99, similar to percentile ranks.
 - NCE scores have a major advantage over percentiles in that they can be averaged.
 - This an important characteristic when studying overall school performance, and in particular, in measuring school-wide gains and losses in student achievement.
 - Used in research.

Standard Scores

- Scores based on performance of others.
- Express the how far a student’s raw score is from the mean in terms of the standard deviation of the standardization samples score distribution.

- **Z-scores**
 - A measure of the distance in standard deviations of a score from a mean.
Standard Scores

- **T-scores** ($t = 10z + 50$)
 - A Z score with a mean of 50 and a standard deviation of 10.

- **Deviation IQ scores** ($IQ = 15z + 100$)
 - A Z Score with a mean of 100 and a standard deviation of 15

- **Terman’s Original IQ Classifications**

<table>
<thead>
<tr>
<th>IQ Range</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>140 and over</td>
<td>Genius or near genius</td>
</tr>
<tr>
<td>120-140</td>
<td>Very superior intelligence</td>
</tr>
<tr>
<td>110-120</td>
<td>Superior intelligence</td>
</tr>
<tr>
<td>90-110</td>
<td>Normal or average intelligence</td>
</tr>
<tr>
<td>80-90</td>
<td>Dullness</td>
</tr>
<tr>
<td>70-80</td>
<td>Borderline deficiency</td>
</tr>
<tr>
<td>Below 70</td>
<td>Feeble-mindedness</td>
</tr>
</tbody>
</table>
Standard Scores

WISC IV Classifications

<table>
<thead>
<tr>
<th>IQ Range</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>130 and above</td>
<td>Very Superior</td>
</tr>
<tr>
<td>120-129</td>
<td>Superior</td>
</tr>
<tr>
<td>110-119</td>
<td>High Average</td>
</tr>
<tr>
<td>100-109</td>
<td>Average</td>
</tr>
<tr>
<td>90-89</td>
<td>Low Average</td>
</tr>
<tr>
<td>70-79</td>
<td>Borderline</td>
</tr>
<tr>
<td>69 and below</td>
<td>Extremely Low</td>
</tr>
</tbody>
</table>

Woodcock’s Classifications

<table>
<thead>
<tr>
<th>IQ Range</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above 130</td>
<td>Very Superior</td>
</tr>
<tr>
<td>121-130</td>
<td>Superior</td>
</tr>
<tr>
<td>111-120</td>
<td>High Average</td>
</tr>
<tr>
<td>90-110</td>
<td>Average</td>
</tr>
<tr>
<td>80-89</td>
<td>Low Average</td>
</tr>
<tr>
<td>70-79</td>
<td>Low</td>
</tr>
<tr>
<td>Below 70</td>
<td>Very Low</td>
</tr>
</tbody>
</table>

Cautions when interpreting IQ test scores

Explaining Scores to Parents

- http://www.teachersandfamilies.com/open/parent/scores2.cfm

Criterion Referenced Scores

- Scores not based on performance of others.
 - Percent correct
 - Percentile rank is often confused with these scores
 - Grades
 - When not comparing to the performance of others

Error in Test Scores

- Error is always present in scores
 - Raw score = true score + error
- The goals are to
 - Reduce error
 - Account for error
- Reliability and validity reduce error
- Standard Error of Measure accounts for error
The Effect of Variance on Score Interpretation

- Standard Error of Measurement (SEm)
 - Estimate of the amount of variance in an obtained test score.
 - How much is the person’s score likely to differ from the true score?
 - Formula
 - \(\text{SEM} = (SD) \times \sqrt{1 - r_{xx}} \)
 - \(r_{xx} \) a reliability coefficient

SE_m

- No test is 100% reliable. All psychological test results are associated with some degree of measurement error.
- The standard error of measurement (SE_m) is an estimate of this error.
- SE_m is directly related to a test’s reliability coefficients. Large SE_m scores are associated with relatively poor reliability and visa versa.
- SE_m is the standard deviation of the distribution of error scores.
Psychometric theory suggests that if an individual was given the same test multiple times, these obtained scores would cluster around the true score. These obtained scores would be normally distributed and form a normal curve.

Standard Error of Measurement

- The standard error of measurement (SE\textsubscript{M}) is obtained by multiplying the standard deviation of the test by the square root of 1 minus the reliability coefficient (r\textsubscript{xx}) of the test.
 - \(SE\textsubscript{M} = SD \times \sqrt{1 - r_{xx}} \)
 - For example, assume that a reading achievement test with a mean of 100 and a standard deviation of 15 has an internal consistency reliability coefficient of .96,
 - \(15 \times \sqrt{1 - .96} = 15 \times 0.04 = 15 \times 0.2 = 3 \) = SE\textsubscript{M}

Review

1. Is it possible to construct a psycho-educational test that generates an individual’s true score?
2. On a psycho-educational test, what is the “obtained” score?
3. Hypothetically, how would one determine the true test score for an individual?
4. What is the standard error of measurement (SE\textsubscript{M})?
5. How is the SE\textsubscript{M} determined?
6. What can you say about a psycho-educational test that has a large SE\textsubscript{M}?
Confidence Intervals

- SE_m can be used to determine confidence intervals (CI).
 - A CI allows a statement to be made about the range within which the testing subject’s true score falls.
 - It sets bands around obtained scores.
 - Helps to identify the range of scores within which the true score lies (vs. those results caused by factors other than the trait being assessed, e.g., good or bad luck).

Confidence Intervals

- 68%, 90%, and 95% CI are typically used.
 - A 68% CI provides the range of scores within which a testing subject’s true score lies 68% of the time. In other words, only 32 times out of 100 will the true score fall outside of this range.
 - A 90% CI provides the range of scores within which a testing subject’s true score lies 90% of the time. In other words, only 10 times out of 100 will the true score fall outside of this range.
 - A 95% CI provides the range of scores within which a testing subject’s true score lies 95% of the time. In other words, only 5 times out of 100 will the true score fall outside of this range.

Confidence Intervals

- The formula for a confidence interval is as follows:
 - CI = obtained test score ± z(SE_m)
 - The z in this formula refers to the z score obtained from a normal curve table.
 - Sample Normal Curve Table.
 - For example, the 95% CI for an reading achievement test scaled score of 99 for our test with a SE_m of 3 is 99 ± 1.96(3).
 - 1.96 times 3 equals 5.88.
 - Rounded up to six, we can say that we are 95% confident that the student who obtained the test standard score of 99 has a true score falling in the range 93 to 105 (99 ±6).
Confidence Intervals

In a psycho-educational report these data might be presented as follows:

“On this measure Jimmy obtained an standard score of 99±6. The chances are 95 out of 100 that Jimmy’s true reading achievement falls in the range of scores 93 to 105. These data are well within the average range. Thus, it can be concluded that Jimmy’s reading achievement is typical of children his age in this test’s standardization sample.”

Wide Range Assessment of Memory and Learning

![Wide Range Assessment of Memory and Learning](image)

Bringing it all Together

Let’s start from the very beginning and bring it all together to ensure we understand SE_M and Confidence Intervals.
Bringing it all Together

- Hypothetically, any psychological test variable measured enough times will be normally distributed.
- In other words, the obtained test scores will be normally distributed.
 - What does it mean to say that a variable (or test scores) is "normally distributed?"
 - Answer is on the next slide

Mean, Median, and Mode are the same.
- 50% of scores are above the mean
- 50% of scores are below the mean
- ± 1 SD = 68% (most) of the obtained scores
- ± 2 SD = 95% (almost all) of the obtained scores
- ± 3 SD = 99.7% (virtually all) of the obtained scores

Bringing it all Together

- ± 1 SD = 34.1 + 34.1 = 68.2% of the scores
- ± 2 SD = 13.6 + 34.1 + 34.1 + 13.6 = 95.4% of the scores
- ± 3 SD = 2.1 + 13.6 + 34.1 + 34.1 + 13.6 + 2.1 = 99.7% of the scores
With a large enough sample size the scores of a psychological test should be normally distributed.

- We can use the test to tell us how far above or below the mean an individual student is (in terms of standard deviations) on the variable (e.g., IQ) measured by the test.

If the sample used to standardize the IQ test (and estimate population performance) is large enough we can expect the scores will be normally distributed. With most IQ tests the Z-scores are transformed such that Mean = 100 and SD = 15 standard score points.
Bringing it all Together

- If we could give the same test to an individual student over-and-over again the obtained scores should be normally distributed.
 - The hypothetical true score is a constant.
 - The obtained test score (the IQ score of the student you test) is true score + error.
 - The error associated with obtained scores is random.
 - Thus, the error scores should also be normally distributed.

The Distribution of Error Scores: Psychometric theory suggests that if an individual was given the same test multiple times, these obtained scores would cluster around the true score. These obtained scores would be normally distributed and form a normal curve.

Bringing it all Together

- Standard Error of Measurement (SE_m) allows the psychologist to account for the error always associated with a given obtained test score.
- It can be used to develop confidence intervals.
As part of the test development process, estimates of the tests reliability (or consistency) are determined.

- Standard deviation for most IQ tests is 15.
- But what is \(r \)?
 - \(SE_M \) is a reflection of the degree to which a test consistently yields the same results for an individual (i.e., that the test itself is reliable).
 - What is the Alternate Form Reliability correlation coefficient and how is it determined?

<table>
<thead>
<tr>
<th>Form A</th>
<th>Form B</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>102</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>115</td>
<td>114</td>
</tr>
<tr>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>120</td>
<td>122</td>
</tr>
<tr>
<td>81</td>
<td>88</td>
</tr>
<tr>
<td>99</td>
<td>98</td>
</tr>
<tr>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>106</td>
<td>106</td>
</tr>
</tbody>
</table>

\[r = .90 \]
Bringing it all Together

- We now have the information we need to determine SE_{M^*}.
 - For an IQ test with a standard deviation of 15 and an alternate form reliability coefficient of .90:
 - $15\sqrt{1-\rho} = 15\sqrt{0.316} = 4.743$
 - $S = SE_{M^*}$
 - We can now develop confidence intervals

$SE_{M^*} = SD\sqrt{1-\rho}$

Bringing it all Together

- A CI accounts for measurement error and allows a statement to be made about the range within which the testing subject’s true score falls.
- It sets bands around obtained scores.

Bringing it all Together

- A CI helps to identify the range of scores within which the true score lies
 - vs. those results caused by factors other than the trait being assessed or error, e.g., sick or unusually attentive, good or bad luck.
Bringing it all Together

- The formula for a CI is as follows:
 - obtained test score ± z(SEM)
- The “z” in this formula refers to the z score obtained from a normal curve table.
- Sample normal curve table:
 - 68% of error scores are accounted for by z = ±1
 - 90% of error scores are accounted for by z = ±1.65
 - 95% of error scores are accounted for by z = ±1.96
 - 99% of error scores are accounted for by z = ±2.58

For example, the 90% CI for an IQ test score of 105 for our test with a SEM of 5 is 105 ± 1.65(5).
- 1.65 times 5 equals 8.25.
- Rounded down to 8, we can say that we are 90% confident that the student who obtained the IQ test score of 105 has a true IQ score falling in the range 98 to 112 (105±8).
- For a test with a SEM of 5 and a SD of 15, the range of IQ scores 98 to 112 includes 90% of the obtained scores (i.e., true score + error) a student might be expected obtain on this test.

Test Bias

- Psychometric definition:
 - A test with systematic differences in the meaning of test scores associated with group membership.
 - People from two groups who have the same observed score do not have the same standing on the trait of interest.
 - A test to predict some criterion of interest results in systematic over- or under-prediction based on group membership.
Possible Bias in Traditional Cognitive Measures

- Inadequate norms
- Testing formats
- Product-oriented response
- Unfamiliar with information tapped
- Lack of relationship between test and classroom
- Test-taking skills
- Trait measurement and stability

Cultural Considerations: Assessment

- Culture and value orientation
- Acculturation
- Culture and communication styles

QUIZ

1. The midpoint of a range of scores is the ________.
2. The ________ represents the most frequently achieved score within a range of scores.
3. The ________ ________ is a measure for variance in a set of scores.
QUIZ

4. Stanines break ordered scores into ___ parts.

5. Most IQ scores have a mean of ____ and a standard deviation of ______.

6. A T-score has a mean of ____ and a standard deviation of ______.

QUIZ

7. What does a z score represent?

8. What is the standard error of measurement (SEM) and how is it helpful in score interpretation?

9. Cornelius' score on the Quick Draw Test placed him at the 35th percentile. What does this mean (in words a parent would understand)?

QUIZ

10. What is the main limitation in the use of percentile ranks?

11. What are primary limitation in the use of grade equivalent scores?

12. Henrietta Goodegg received a z-score of +1.5 on the speeded chicken plucking test. What is her T-score? Is she slower or faster than the average chicken plucker?
13. Red Island’s T-score on the chicken plucking test was 55. Legless Horn’s score was 48. The test has a SEM of 5 and a 90% confidence interval of 8. Can we conclude that Red is definitely a faster chicken plucker than Legs? Explain your answer.

Questions?

Next Week (11/26/12): Measures of Validity)
No papers due
Reading ERIC Development Team (1999), and Messic (1990)