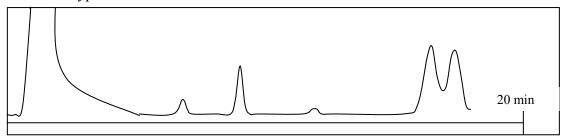

Chem 231 Final Exam April 9, 2007

Name	
Short Answer Section (each answer worth 5 poi	ints unless stated otherwise)
 Solid phase microextraction (SPME) can be on the head space above liquid samples. List of either the analytes or other components of would be generally preferred. Sample Characteristic 	st characteristics of sample (characteristic
2. List or describe a method for trapping and ar samples:	, ,
3. Biodiesel is analyzed for residual glycerol. Compound class of biodiesel is fatty acid methy stationary phases would be most useful in using glycerol from biodiesel: a) C18 b) C8 c) grap	l (or ethyl) esters. Which of the following
4. List an application for using low pressure co for which HPLC is often too expensive or time Common application for column chromatograpl	consuming to set up runs:
5. A compound in a complex sample is being a There is concern that extraction and conversion It would be a good idea to add a/ana) external standardb) internal standard d) deuterated solvent	during derivatization is not very efficientto the original sample:
6. The following questions concern the chromatogram to the right, integrated as shown by the dashed lines. Assume the	

method. Lis	st an importai	ilent 1100 usi nt task that the	e exit method	performs.	ommon to use	an exit	
compounds	it is selective	tector for GC for (3 points Clas	each)		and indicate	what	
	_	of LC-MS re		`		advantages	
Problem Section 1. (13 points) A research scientist isolates a compound (compound X) from a plant and conducts the tests using liquid – liquid extraction to optimize its extraction. Using water and 1-octanol, the following distribution coefficients, D (= [X] _{octanol} /[X] _{water}) are calculated as a function of pH:							
рН	2	4	6	8	10	12	
D	0.008	0.8	39	76	76	75	
both types o b) Suggest a	f groups?	pear to have a	ound X from	an aqueous e	extract of the p		
c) If compound X is analyzed using HPLC with a C18 column, what would be an optimal pH if relatively strong retention is needed along with a method that will not cause degradation of the column? What happens if the pH is higher than or lower than the optimal pH?							
d – bonus 3	pts) Using ir	nformation in	the table, cal	culate a p K_a v	value for com	pound X.	

2. (18 points). The chromatogram shown below was for sugars present at a concentration of $0.4~\mu g~mL^{-1}$. These sugars were separated using a **normal phase** column and a gradient program with an increasing % water in acetonitrile. Peaks corresponding to compounds were eluted at times of 4.60, 6.36, 7.20, 8.04, and 8.63 min. Neglect the peak at 9.36 min.

a) Estimate the detection limit for the sugar eluting at 4.60 min. assuming that the minimum detectable signal is defined as a signal to noise (peak to peak) of 2.


b) Does the sensitivity appear to improve or get worse for later eluting compounds? Is this normally expected?

c) Based on the column type and retention times, which peak corresponds to the most polar compound?

3. (15 points) A method was developed to test for the analysis of fatty acids in particulate matter in the air in order to determine if meat grilling is a significant source of particulate matter. Air was passed through a filter at a flow rate of 17 L/min for 12 hours with the particulate matter trapped on the filter. The filters were extracted in a mixture of methanol and dichloromethane to remove the fatty acids. This extract, containing fatty acids, was then reacted to fatty acid methyl esters (FAMEs). The FAMEs were extracted into hexane using hexane and water. The hexane was collected and evaporated to less than 1 mL and then diluted to 1.0 mL in hexane with nonane added as an internal standard added so that nonane was present at a concentration of 25.0 µg mL⁻¹. A standard containing FAMEs and nonane with each component present at 25.0 µg mL⁻¹ was also prepared. These samples were analyzed by GC with the data shown below. Given atomic weights, **calculate the concentration of stearic acid (CH₃(CH₂)₁₆COOCH) in the air in units of ng L⁻¹.** Stearic acid methyl ester is CH₃(CH₂)₁₆COOCH₃. AWs: C = 12.01, H = 1.008, and O = 16.00 (all in units g/mol).

		Peak Areas		
	Nonane	Stearic Acid Methyl Ester		
Standard	32,061	26,931		
Sample	47,133	15,031		

- 4. (7 points) The following chromatogram is obtained by GC using a 30m x 0.25 mm DB-5 column (non-polar) column. When looking at the mass spectrum, it is seen that the compounds corresponding to the last two peaks have very different polarities.
- a) Indicate how separation of the last two peaks can be improved without changing the column.
- b) Indicate how separation of the last two peaks can be improved by switching to a different type of column.

