CHEMISTRY 253
 Spring, 2015 - Dixon
 Homework Set 1.3
 Solutions - Collected Problems

Set 1.3

Problems: 3-1, 3-3, 3-5, 3-8
3-1 In one study, the concentration of OH in air at the time was found to be 8.7×10^{11} $\mathrm{molec} / \mathrm{cm}^{3}$. Calculate its molar concentrations and its concentrations in parts per trillion, assuming that the total air pressure is 1.0 atm and the temperature is $15^{\circ} \mathrm{C}$.
$n / V=\left(8.7 \times 10^{6} \mathrm{molec} / \mathrm{cm}^{3}\right)(1000 \mathrm{~cm} / \mathrm{L})\left(1 \mathrm{~mol} / 6.02 \times 10^{23} \mathrm{molec}\right)=1.4 \times 1 \mathbf{0}^{-14} \mathbf{~ m o l} / \mathrm{L}$
parts per trillion is equivalent to $n_{\mathrm{OH}} / n_{\text {air }}$
$n_{\text {OH }} / n_{\text {air }}=\left(1.45 \times 10^{-14} \mathrm{~mol} / \mathrm{L}\right) /\left(n_{\text {air }} / V\right)=\left(1.45 \times 10^{-14} \mathrm{~mol} / \mathrm{L}\right) /(P / R T)$
$n_{\mathrm{OH}} / n_{\text {air }}=\left(1.45 \times 10^{-14} \mathrm{~mol} / \mathrm{L}\right) /(1.0 \mathrm{~atm} /[(0.0821 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K})(273.15+15)]$
$n_{\mathrm{OH}} / n_{\text {air }}=\left(1.45 \times 10^{-14} \mathrm{~mol} / \mathrm{L}\right) /(0.04227 \mathrm{~mol} / \mathrm{L}) 10^{12}=\mathbf{0 . 3 4}$ parts per trillion
3-3 Convert into ppb units the EU ozone standard of $120 \mu \mathrm{~g} \mathrm{~m}^{-3}$ and the WHO standard of 100 $\mu \mathrm{g} \mathrm{m}{ }^{-3}$, assuming summertime air temperature of $27^{\circ} \mathrm{C}$.
EU ozone $=\left(120 \mu \mathrm{~g} \mathrm{~m}^{-3}\right)(1 \mu \mathrm{~mol} / 48.0 \mu \mathrm{~g})\left(\mathrm{m}^{3} / 1000 \mathrm{~L}\right)\left(1 \mathrm{~mol} / 10^{6} \mu \mathrm{~mol}\right)=2.50 \times 10^{-9} \mathrm{~mol} / \mathrm{L}$ $\mathrm{n}_{\text {ozone }} / \mathrm{n}_{\text {air }}=\left(2.50 \times 10^{-9} \mathrm{~mol} / \mathrm{L}\right) /[(1.0 \mathrm{~atm}) /[0.0821 \mathrm{~L} \mathrm{~atm} / \mathrm{mol} \mathrm{K})(273.15+27)]=6.16 \times 10^{-8}$ mixing ratio $=\left(6.16 \times 10^{-8}\right)\left(10^{9}\right)=\mathbf{6 2 ~ p p b}$
WHO standard $=(62 \mathrm{ppb})(100 / 120)=51 \mathbf{~ p p b}$
3-5 Using Figure 3-8, and assuming a NO_{x} concentration of 0.20 ppm , estimate the effect on ozone levels of reducing the VOC concentration from 0.5 to 0.4 ppm . Do your results support the characterization of that zone of the graph as VOC limited?
By looking at the arrow on the plot below (starting at B and moving to the left), it is seen that ozone did decrease indicating that the conditions were in the VOC limited region.

FIGURE 3-8 The

relationship between NO_{x} and VOC concentrations in air and the resulting levels of ozone produced by their reaction. Points A, B, and C denote conditions discussed in the text. [Source: Redrawn from National Research Council, Rethinking the Ozone Problem in Urban and Regional Air Pollution (Washington, DC: National Academy Press, 1991).]

3-8 Deduce the balanced redox equation that converts urea and nitric oxide into $\mathrm{N}_{2}, \mathrm{CO}_{2}$, and water.
Urea $=\mathrm{NH}_{2} \mathrm{CONH}_{2}=\mathrm{CN}_{2} \mathrm{H}_{4} \mathrm{O}+\mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ (unbalanced)
Redox part: O is -2 , C is +4 , H is -1 , and N is: +2 in $\mathrm{NO}, 0$ in N_{2}, and -3 in each N in $\mathrm{CN}_{2} \mathrm{H}_{4} \mathrm{O}$
Oxidation half reaction: $\mathrm{CN}_{2} \mathrm{H}_{4} \mathrm{O}+3 / 2 \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+6 e^{-}$
Reduction half reaction: $2 \mathrm{NO}+4 e^{-} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$
We now combine the two half reactions (but also must eliminate O as it would otherwise require redox reactions): 2[oxidation] + 3[reduction]

$$
\begin{array}{ll}
& 2 \mathrm{CN}_{2} \mathrm{H}_{4} \mathrm{O}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2}+2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}+12 e^{-} \\
& 6 \mathrm{NO}+12 e^{-} \rightarrow 3 \mathrm{~N}_{2}+3 \mathrm{O}_{2} \\
\text { Net: } & 2 \mathrm{CN}_{2} \mathrm{H}_{4} \mathrm{O}+6 \mathrm{NO} \rightarrow 5 \mathrm{~N}_{2}+2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

Additional Problems: 3-1, 3-2

3-1 The rate constant for the oxidation of nitric oxide by ozone is $2 \times 10^{-14} \mathrm{molec}^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$, whereas that for the competing reaction in which it is oxidized by oxygen, i.e.

$$
2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}
$$

Is $2 \times 10^{-38} \mathrm{molec}^{-2} \mathrm{~cm}^{6} \mathrm{~s}^{-1}$. For typical concentrations encountered in morning smog episodes, namely 40 ppb for ozone and 80 ppb for nitric oxide, deduce the rates of these two reactions and decide which one is the dominant process.
Conversion to molec cm ${ }^{-3}: O_{3}$ at 40 ppb is $P_{O 3}=4 \times 10^{-8} \mathrm{~atm}$ and $n / V=P / R T$
$=\left(4 \times 10^{-8} \mathrm{~atm}\right) /\left[\left(0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K})\right]$
$=\left(1.635 \times 10^{-9} \mathrm{~mol} L^{-1}\right)\left(6.02 \times 10^{23} \mathrm{molec} / \mathrm{mol}\right)\left(\mathrm{L} / 1000 \mathrm{~cm}^{3}\right)$
$=9.84 \times 10^{11}$ molec $\mathrm{cm}^{-3} . N O$ (twice the concentration) $=1.968 \times 10^{12}$ molec cm^{-3}.
$\mathrm{O}_{2}:(0.21 \mathrm{~atm}) /\left[\left(0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(298 \mathrm{~K})\right]=5.167 \times 10^{18} \mathrm{molec} \mathrm{cm}^{-3}$
$\mathrm{NO}+\mathrm{O}_{3}$ rate: rate $=k[\mathrm{NO}]\left[\mathrm{O}_{3}\right]$
$=\left(2 \times 10^{-14}\right.$ molec $\left.^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}\right)\left(9.84 \times 10^{11}\right.$ molec $\left.\mathrm{cm}^{-3}\right)\left(1.968 \times 10^{12}\right.$ molec $\left.\mathrm{cm}^{-3}\right)$
$=3.9 \times 10^{10}$ molec $\mathrm{cm}^{3} \mathrm{~s}^{-1}$.
For $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ reaction, rate $=k\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.$
$=\left(2 \times 10^{-38}\right.$ molec $\left.^{-2} \mathrm{~cm}^{6} \mathrm{~s}^{-1}\right)\left(1.968 \times 10^{12} \text { molec } \mathrm{cm}^{-3}\right)^{2}\left(5.167 \times 10^{18}\right.$ molec $\left.\mathrm{cm}^{-3}\right)$
$=40,000$ molec $\mathrm{cm}^{-3} \mathrm{~s}^{-1}$
The $\mathrm{NO}+\mathrm{O}_{3}$ is the dominant reaction.
3-2 In a particular air mass, the concentration of OH was found to $8.7 \times 10^{6} \mathrm{molec} \mathrm{cm}^{-3}$, and that of carbon monoxide was 20 ppm .
a) Calculate the rate of the reaction of OH with atmospheric CO at $30^{\circ} \mathrm{C}$, given that the rate constant for the process is $5 \times 10^{-13} \mathrm{e}^{-300 / T} \mathrm{molec}^{-1} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
CO conc. from mixing ratio: $n / V=P / R T=\left(2 \times 10^{-5} \mathrm{~atm}\right) /\left[\left(0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1}\right)(303 \mathrm{~K})\right]$
$=8.04 \times 10^{-7} \mathrm{~mol} / \mathrm{L}=4.84 \times 10^{14} \mathrm{molec} \mathrm{cm}^{-3}$
Rate $=k[\mathrm{OH}][\mathrm{CO}]=7.84 \times 10^{8}$ molec $\mathrm{cm}^{-3} \mathrm{~s}^{-1}$
b) Estimate the half-life of an OH molecule in air, assuming that its lifetime is determined by its reaction with CO. [Hint: re-express the rate law as a pseudo-first-order process with the level of CO fixed at 20 ppm].
$\tau=1 / \mathrm{k}[\mathrm{CO}]=0.011 \mathrm{~s} \mathrm{t}_{1 / 2}=\operatorname{tln} 2=\mathbf{0 . 0 0 7 7} \mathbf{s}$

