CHEMISTRY 133 Spring, 2015 Homework Set 2.2 Additional Problem Only Problems in Bold are Submitted for Grading

Additional Problems:

1. The transmittance of a dye is measured at 524 nm using a 1 cm cell in five samples. At this wavelength, the dye is known to have a molar absorbtivity of 63,200 M⁻¹ cm⁻¹. Given the transmittance values in the table below, and assuming that the uncertainty on each transmittance measurement is a constant value of 0.008, calculate the concentration of each dye sample and its uncertainty. You may want to consult Harris Appendix C which covers propagation of uncertainty in such cases.

	Transmittance (not given as a	Conc	Unc. Conc.
Dye Sample #	%)		
1	0.092	1.64 x 10 ⁻⁵ M	0.06 x 10 ⁻⁵ M
2	0.131	1.40 x 10 ⁻⁵ M	0.04 x 10 ⁻⁵ M
3	0.489	4.9 x 10 ⁻⁶ M	0.1 x 10 ⁻⁶ M
4	0.864	1.00 x 10 ⁻⁶ M	0.06 x 10 ⁻⁶ M
5	0.913	$6.3 \times 10^{-7} M$	$0.6 \ge 10^{-7} M$

Conc. = C where C = A/ ϵ b and A = -logT or C = -logT/ ϵ b If unc. = S, S_C = [(dC/dT)²S_T²]^{0.5} = |-S_T/(2.303 ϵ bT)| = S_T/(2.303 ϵ bT)