CHEMISTRY 133

Spring, 2015 Homework Set 1.2

Complete for quiz on Feb. 19

1. Sketch waveforms or Fourier transforms of waveforms
a) assume infinite waveform

b)

c)

Amplitude

Amplitude

frequency

2. Sketch V_{R} and $\mathrm{V}_{\text {diode }}$ in the circuit to the right when $\mathrm{V}_{\text {in }}$ looks as follows:

Assume the diode acts ideally.

3. Convert the following numbers between binary and decimal (a and b to decimal, \mathbf{c} and d to binary):
a) 11011
b) $\mathbf{1 0 0 1 0 1 1}$
c) 13
d) 93
4. A CO monitor with an analog signal of $0.050 \mathrm{~V} / \mathrm{ppm}$ put is placed in a parking garage. It is desired to be able to record "normal" garage air (concentration ranging between 1 and 10 ppm) as well as to measure high concentration periods when cars drive by (up to 100 ppm). An analog to digital converter with 10 bits with an input range of 0 to 10 V is used (0 corresponding to 10 0 's and 10 corresponding to 101 's).
a) Calculate the voltage from the monitor and corresponding decimal and binary numbers from the digitizer given a CO concentration of 8.20 ppm .
b) What is the maximum $C O$ concentration that can be recorded (without exceeding the A / D board's limit)?
c) It is desired to be able to record concentrations as low as 1 ppm with a relative uncertainty of 5% or less. What is the minimum number of bits needed to accomplish this?
5. A voltmeter was used to measure the potential of a cell with an internal resistance of 750Ω. What must be the internal resistance of the meter be if the relative error in the measurement is to be less than -0.10% ?
6. The following circuit is used to measure the resistance \mathbf{R}_{x} of a thermistor:

The constant current voltage source puts out a constant current $500.0 \mu \mathrm{~A}$ (over some voltage range). The DVM (digital volt meter) can read voltage between 0 and 2 V with a 10 bit digitizer. The thermistor's resistance is a function of temperature.
a) If the binary reading on the DVM is 0011011011 , calculate the associated decimal
number.
b) For the DVM reading in a), determine the voltage of the voltmeter.
c) Using the value of \mathbf{V} in b), determine R_{x}.
d) What is the smallest change in resistance that can be discerned by the digitizer?

