CHEMISTRY 133

Quiz 2 - SOLUTIONS
In the circuit shown below, a Faraday cup in a flame ionization detector (FID) is used to measure the current positive ions produced in the flame as they hit the cup. The A/D board shown in the circuit diagram is used to record the voltage drop across the resistor with resistance $135,000 \Omega$ so that the Faraday cup current can be calculated. When the FID is used for detection of hydrocarbons, the current is proportional to moles carbon reaching the FID per second. The A/D board has 10 bits with a range of 0 to 1.000 V .
Answer the following questions below:

When $5.0 \mathrm{nmol} / \mathrm{s}$ reaches the FID, the average binary number recorded by the A / D board is: 1001001110.

For an A/D board with n bits, the following equation can be used:

$$
\text { decimal No. }=\frac{\left(V-V_{\min }\right) 2^{n}}{\left(V_{\max }-V_{\min }\right)}
$$

a) What is the decimal number corresponding to?
$512+0 \cdot 256+0 \cdot 128+64+0 \cdot 32+0 \cdot 16+8+4+2+0 \cdot 1=590$
b) What voltage corresponds to A / D reading?
decimal $\#=590=(V-0) \cdot 2^{10} /(1.000 V-0 V)$ or $V=(590)(1.000 \mathrm{~V}) / 1024=0.576 \mathrm{~V}$
c) What is the current coming from the Faraday cup? (assume zero current to A/D board) $I=V / R=0.576 \mathrm{~V} / 135,000=4.27 \times \mathbf{1 0}^{-6} \mathrm{~A}$

Bonus) Give the maximum detectable flux (in $\mathrm{nmol} / \mathrm{s}$).
Flux $=F$ is proportional to current and current is proportional to measured voltage (since $V=I R$ and R is constant). Thus $F=k V$ or $F_{\max } / F=V_{\max } / V$
$F_{\max }=\left(V_{\max } / V\right) F=(1.000 \mathrm{~V} / 0.576 \mathrm{~V})(5.0 \mathrm{nmol} / \mathrm{s})=8.7 \mathrm{nmol} / \mathrm{s}$

