CHEMISTRY 1B - Fall, 2015 EXAM 1 - VERSION A

Use Scantron Form SC982-E and select the letter corresponding to the correct answer. Make sure to put **your full name, lab section number, and exam version** (under test no.) on the Scantron Form.

Equations and constants that you could need: 0° C = 273 K; $K_w = 1.0 \times 10^{-14}$

The quadratic equation for $ax^2 + bx + c = 0$ is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

A periodic table is provided on the last page along with a blank page to be used as scratch paper.

Part I. Multiple Choice Section. All Questions have only one correct answer. Each Question is worth 4 points.

- 1. The reaction $2NO_2(g) \leftrightarrow N_2O_4(g)$ is at equilibrium. This means that:
- a) No molecules of reactant or product are being converted any longer
- b) For every 2 molecules of NO_2 that react to form N_2O_4 , one of NO_2 N_2O_4 reacts backwards.
- c) The rate constants for the forward reaction and backwards reaction are equal
- d) The forward and backwards rates have decreased to zero
- 2. Given the K values for the two reactions (with the right side called a "complex"):

 $Cu^{2+}(aq) + 4NH_3(aq) \rightleftharpoons Cu(NH_3)_4(aq) K = 8 \times 10^8 \text{ and}$

 $Hg^{2+}(aq) + 4NH_3(aq) \rightleftharpoons Hg(NH_3)_4(aq)$ K = 2 x 10^{19} , we can conclude:

- a) Cu²⁺ complexes weakly with NH₃
- b) Hg^{2+} complexes more strongly with NH_3 than Cu^{2+}
- c) NH₃ is a poor Lewis base
- d) Cu²⁺ and Hg²⁺ would remain mostly uncomplexed even with NH₃ present
- 3. Which of the following concentration based equilibrium equations correctly corresponds to the following chemical equation: $2CO(g) + 4H_2(g) \rightleftharpoons C_2H_5OH(g) + H_2O(g)$?

a)
$$K_C = \frac{[CO][H_2]}{[C_2H_5OH][H_2O]}$$

b)
$$K_C = \frac{[CO]^2[H_2]^4}{[C_2H_5OH][H_2O]}$$

c)
$$K_C = \frac{[C_2H_5OH][H_2O]}{[CO][H_2]}$$

d)
$$K_C = \frac{[C_2H_5OH][H_2O]}{[CO]^2[H_2]^4}$$

- 4. In the reaction: $CO_3^{2-}(aq) + CO_2(g) + H_2O(l) \rightleftharpoons 2HCO_3^{-}(aq)$, all of the species except ____ will be included in the equilibrium equation.
- a) CO₃²⁻(aq)
- b) CO₂(g)
- c) H₂O(l)
- d) HCO₃-(aq)
- 5. For the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$, If the initial partial pressure of N_2 , H_2 , and NH_3 are 10.0, 10.0 and 0 atm and the equilibrium partial pressure of NH_3 is 6.0 atm, $K_P = 10.0$
- a) 3.6 x 10⁻³
- b) 0.06
- c) 0.14
- d) 5.1

atm and 5.0 x 10 ⁻⁴ ata	m, respectively and en 20, in which direction	nter the air. If K_P for the	oceed if $P_{02} = 0.20$ atm?		
7. If K_C for the reaction $2Na_2O_2(s) + 2CO_2(g) \rightleftharpoons 2Na_2CO_3(s) + O_2(g)$ is 6.3×10^4 , what is the equilibrium concentration of CO_2 in M if the equilibrium concentration of O_2 is 0.0100 M?					
a) 1.6 x 10 ⁻⁷	b) 4.0 x 10 ⁻⁴	c) 2.0 x 10 ⁻⁴	d) 0.020 M		
8. The reaction $2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$ starts with $P_{N2} = 0.79$ atm, $P_{02} = 0.20$ atm (and no N_2O) and proceeds to an equilibrium. The ICE table equilibrium partial pressures of N_2 , O_2 and N_2O (bottom row of table) will be: a) $0.79 - x$ and $0.20 - x$, and $+x$, respectively b) $0.79 - 2x$ and $0.20 - x$, and $+2x$, respectively c) $0.79 + x$ and $0.20 + x$, and $-x$, respectively d) 0.79^2 , 0.2 , and $2x^2$, respectively					
	$+ O_2(g) \rightleftharpoons 2NO(g) \text{ has}$ $(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ b) 7.6×10^{-8}		$_{2}(g) + 2O_{2}(g) \rightleftharpoons 2NO_{2}(g)$ d) 1.9×10^{10}		
10. The reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ reaches an equilibrium in a sealed 1.0 L flask. This reaction is endothermic. Which of the following changes will result in a shift toward the products? a) decreasing the flask temperature b) increasing the flask volume c) adding a catalyst d) removing through N_2O_4 condensation					
11. In the reaction: $Al(H_2O)_6^{3+}(aq) + H_2O(l) \rightleftharpoons Al(H_2O)_5OH^{2+}(aq) + H_3O^{+}(aq)$, the Bronsted-Lowry acid (in the direction shown) is: a) $Al(H_2O)_6^{3+}(aq)$ b) $H_2O(l)$ c) $Al(H_2O)_5OH^{2+}(aq)$ d) $H_3O^{+}(aq)$					
12. A Lewis acid is day a compound that pc) an electron pair ac	oroduces H+ in water	b) a proton donor d) a positively charg	ged acid		
13. Which of the follows) KOH	owing salt solutions i b) NH4Cl	s neutral? c) Na ₂ CO ₃	d) KNO ₃		
 14. Which of the followith the greatest K a) HSO₄- (pK_a = 2.00 c) N₂H₅+ (pK_a = 7.98 	_b)?)	trongest conjugate base b) HF (pK _a = 3.17) d) HCN (pK _a = 9.24)	se (conjugate base		
15. What is the pH o a) 0.01	f a 0.0050 M Ba(OH) ₂ b) 2.00	solution? (Note: K _w gi	iven on p. 1) d) 12.00		

16. A solution has a pH of 4.89. [H+] is:

a) 7.8 x 10⁻¹⁰

b) 1.3 x 10⁻⁵

c) 7.5 x 10⁻³

d) 0.69

17. What is the pH of a 0.20 M $HC_2H_3O_2$ acid ($K_a = 1.8 \times 10^{-5}$)?

a) 0.70

b) 2.72

c) 4.74

d) 7.00

18. An unknown weak acid is prepared to an initial concentration of 0.010 M. The pH is measured to be 3.16. The percent ionization of that weak acid is:

a) 0.16%

b) 3.3%

c) 6.9%

d) 135%

19. A polyprotic acid is **defined as** an acid which:

a) releases two or more protons per molecule

b) is a polymer that is acidic

c) has both acid and base functional groups

d) all of the above

20. Which of the following combinations makes the best buffer?

a) HCl + NaCl

b) $NH_4Cl + NH_3$

c) $HC_2H_3O_2 + HCl$

d) $KOH + H_2O$

21. Fluorine is the most electronegative element and it stabilizes electron rich anions. Based on this, which of the following acids would be expected to be the strongest?

a) CH₃CO₂H

b) CFH₂CO₂H

c) CF₂HCO₂H

d) CF₃CO₂H

22. How many moles of sodium acetate should be added to a 1.0 L solution of 0.040 M acetic acid to make a pH = 5.00 buffer? (acetic acid $K_a = 1.8 \times 10^{-5}$)

a) 0.023 moles

b) 0.050 moles

c) 0.070 moles

d) 1.00 moles

23 - Bonus. Given K_a values below, which anion will make an acidic solution?

a) HPO₄2-

h) HCO₂-

c) HC₀H₄O₄-

d) C2H2O2-

a) 111 04	b) 11GO3	C) 11G8114O4	uj 6211302
Acid	K _{a1}	K _{a2}	K _{a3}
H ₃ PO ₄	7.1 x 10 ⁻³	6.3 x 10 ⁻⁸	4.2 x 10 ⁻¹³
H_2CO_3	4.5 x 10 ⁻⁶	4.7 x 10 ⁻¹¹	NA
$H_2C_8H_4O_4$	1.1 x 10 ⁻³	3.9 x 10 ⁻⁶	NA
$HC_2H_3O_2$	1.8 x 10 ⁻⁵	NA	NA

Work out Problem (12 pts) - Answer on the back of the Scantron and show work Consider the following equation:

$$2H_2S(g) \leftrightarrow 2H_2(g) + S_2(g)$$
 $K_C = 1.91 \times 10^{-8} \text{ (at } 1000 \text{ K)}$

If the initial concentration of H₂S(g) was 0.060 M and the other species were at zero, what is the equilibrium concentration of the product, H₂(g)? You must show your work for full credit. If you make any simplifying assumptions, show and validate them.