CHEMISTRY 1B - Fall, 2015 EXAM 1 - VERSION A KEY **Use Scantron Form SC982-**E and select the letter corresponding to the correct answer. Make sure to put **your full name, lab section number, and exam version** (under test no.) on the Scantron Form. Equations and constants that you could need: 0° C = 273 K; $K_w = 1.0 \times 10^{-14}$ The quadratic equation for $ax^2 + bx + c = 0$ is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ A periodic table is provided on the last page along with a blank page to be used as scratch paper. **Part I. Multiple Choice Section.** All Questions have only one correct answer. Each Question is worth 4 points. - 1. The reaction $2NO_2(g) \leftrightarrow N_2O_4(g)$ is at equilibrium. This means that: - a) No molecules of reactant or product are being converted any longer - b) For every 2 molecules of NO₂ that react to form N₂O₄, one of NO₂N₂O₄ reacts backwards. - c) The rate constants for the forward reaction and backwards reaction are equal - d) The forward and backwards rates have decreased to zero - 2. Given the K values for the two reactions (with the right side called a "complex"): $Cu^{2+}(aq) + 4NH_3(aq) \rightleftharpoons Cu(NH_3)_4(aq) K = 8 \times 10^8 \text{ and}$ $Hg^{2+}(aq) + 4NH_3(aq) \rightleftharpoons Hg(NH_3)_4(aq)$ K = 2 x 10^{19} , we can conclude: - a) Cu^{2+} complexes weakly with NH_3 - b) Hg²⁺ complexes more strongly with NH₃ than Cu²⁺ - c) NH₃ is a poor Lewis base - d) Cu^{2+} and Hg^{2+} would remain mostly uncomplexed even with NH_3 present - 3. Which of the following concentration based equilibrium equations correctly corresponds to the following chemical equation: $2CO(g) + 4H_2(g) \rightleftharpoons C_2H_5OH(g) + H_2O(g)$? a) $$K_C = \frac{[CO][H_2]}{[C_2H_5OH][H_2O]}$$ b) $$K_C = \frac{[CO]^2 [H_2]^4}{[C_2 H_5 OH] [H_2 O]}$$ c) $$K_C = \frac{[C_2H_5OH][H_2O]}{[CO][H_2]}$$ d) $$K_C = \frac{[C_2H_5OH][H_2O]}{[CO]^2[H_2]^4}$$ - 4. In the reaction: $CO_3^{2-}(aq) + CO_2(g) + H_2O(l) \rightleftharpoons 2HCO_3^{-}(aq)$, all of the species except ____ will be included in the equilibrium equation. - a) $CO_3^{2-}(aq)$ - b) $CO_2(g)$ - c) $H_2O(l)$ - d) HCO_3 -(aq) 5. For the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$, If the initial partial pressure of N_2 , H_2 , and NH_3 are 10.0, 10.0 and 0 atm and the equilibrium partial pressure of NH_3 is 6.0 atm, $K_P = ICE\ Table$ $N_2(a) + 3H_2(a) \rightleftharpoons 2NH_3(a)$ | | - 12(8) | 2(8) | (8) | |--------|--------------|-----------------|----------| | Init. | 10.0 | 10.0 | 0 | | Change | -X | -3x | +2x | | Equil. | 10 - x = 7.0 | 10 - 3(3) = 1.0 | 2x = 6.0 | $$(x = 3) K = (6.0)^2 / [(7.0)(1.0)^3] = 5.1$$ - a) 3.6 x 10⁻³ - b) 0.06 - c) 0.14 - d) 5.1 - 6. Sulfur gases leaving a power plant exhaust stack have P_{S02} and P_{S03} equal to 1.0×10^{-2} atm and 5.0×10^{-4} atm, respectively and enter the air. If K_P for the reaction $2SO_2(g) + O_2(g) \leftrightarrow 2SO_3(g)$ is 320, in which direction with the reaction proceed if $P_{02} = 0.20$ atm? $Q = P_{S03}^2/[P_{S02}^2P_{02}] = (5.0 \times 10^{-4})^2/[(1.0 \times 10^{-2})^2(0.20)] = 0.013 < K$ - a) to the products b) to the reactants c) it is at equilibrium - d) depends on ΔH - 7. If K_C for the reaction $2Na_2O_2(s) + 2CO_2(g) \rightleftharpoons 2Na_2CO_3(s) + O_2(g)$ is 6.3×10^4 , what is the equilibrium concentration of CO_2 in M if the equilibrium concentration of O_2 is 0.0100 M? $$K_C = 6.3 \times 10^4 = [O_2]/[CO_2]^2 = 0.0100 \text{ M}/[CO_2]^2 \text{ or } [CO_2]^2 = 0.0100/6.3 \times 10^4$$ $[CO_2]^2 = 1.59 \times 10^{-7} \text{ or } [CO_2] = (1.59 \times 10^{-7})^{0.5} = 4.0 \times 10^{-4} \text{ M}$ a) 1.6×10^{-7} b) 4.0×10^{-4} c) 2.0×10^{-4} d) 0.020 M 8. The reaction $2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$ starts with $P_{N2} = 0.79$ atm, $P_{O2} = 0.20$ atm (and no N_2O) and proceeds to an equilibrium. The ICE table **equilibrium** partial pressures of N_2 , O_2 and N_2O (bottom row of table) will be: ICE Table $2N_2(g)$ + $O_2(g)$ = $2N_2O(g)$ Init. 0.79 0.20 0 Change -2x -x +2x Equil. 0.79 - 2x 0.20 - x 2x - a) 0.79 x and 0.20 x, and +x, respectively b) 0.79 2x and 0.20 x, and +2x, respectively c) 0.79 + x and 0.20 + x, and -x, respectively d) 0.79^2 , 0.2, and $2x^2$, respectively - 9. If at 1000° C, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ has $K = 2.0 \times 10^{-9}$ and $N_2(g) + 2O_2(g) \rightleftharpoons 2NO_2(g)$ has K = 38, then $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ has K = 38. if first rxn is 1 and 2^{nd} is 2, we can see that 3^{rd} rxn is 2 + -1 (-1 means in reverse direction). Thus $K = K_2/K_1 = 38/2.0 \times 10^{-9} =$ - a) 5.3 x 10⁻¹¹ - b) 7.6 x 10⁻⁸ - c) 38 - d) 1.9 x 10¹⁰ - 10. The reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ reaches an equilibrium in a sealed 1.0 L flask. This reaction is endothermic. Which of the following changes will result in a shift toward the products? - a) decreasing the flask temperature - b) increasing the flask volume c) adding a catalyst d) removing through N₂O₄ condensation | 11. In the reaction: $Al(H_2O)_6^{3+}(aq) + H_2O(l) \rightleftharpoons Al(H_2O)_5OH^{2+}(aq) + H_3O^{+}(aq)$, the Bronsted-Lowry acid (in the direction shown) is: a) $Al(H_2O)_6^{3+}(aq)$ b) $H_2O(l)$ c) $Al(H_2O)_5OH^{2+}(aq)$ d) $H_3O^{+}(aq)$ | | | | | |---|----------------------|----------------------------------|--------------------------------|--| | 12. A Lewis acid a) a compound tl c) an electron pa | nat produces H+ i | | on donor
ively charged acid | | | 13. Which of the following salt solutions is neutral? a) KOH b) NH ₄ Cl c) Na ₂ CO ₃ d) KNO ₃ OH- and CO ₃ ²⁻ are basic and NH ₄ + is acidic (other ions are all neutral) | | | | | | 14. Which of the following acids has the strongest conjugate base (conjugate base with the greatest K_b)? a) HSO_4 (p $K_a = 2.00$) b) HF (p $K_a = 3.17$) c) N_2H_5 (p $K_a = 7.98$) d) HCN (p $K_a = 9.24$) $K_w = K_aK_b$ or $14 = pK_a + pK_b$ or $pK_b = 14 - pK_a$ (smallest pK_b is strongest) | | | | | | 15. What is the pH of a $0.0050 \text{ M Ba}(OH)_2$ solution? (Note: K_w given on p. 1) a) 0.01 b) 2.00 c) 11.70 d) 12.00 [OH-] = $2[Ba(OH)_2]_0 = 0.010 \text{ M}$ and pH = $14 - pOH = 14 + log[OH-] = 12.00$ | | | | | | 16. A solution has a pH of 4.89. [H+] is:
a) 7.8×10^{-10} b) 1.3×10^{-5} c) 7.5×10^{-3} d) 0.69 [H+] = $10^{-4.89}$ | | | | | | 17. What is the pH of a 0.20 M $HC_2H_3O_2$ acid ($K_a = 1.8 \times 10^{-5}$)? | | | | | | a) 0.70 | b) 2.72 | c) 4.74 | d) 7.00 | | | ICE Table | $HC_2H_3O_2(aq)$ | \rightleftharpoons $H^+(aq)$ + | $C_2H_3O_2$ (aq) | | | Init. | 0.20 | 0 | 0 | | | Change | -X | +X | +X | | | Equil. | $0.20 - x \sim 0.20$ | X | X | | | $K_a = 1.8 \times 10^{-5} = x^2/(0.20) \text{ or } x = (3.6 \times 10^{-6})^{0.5} = 1.9 \times 10^{-3} \text{ M pH} = -\log(1.9 \times 10^{-3})$ | | | | | | 18. An unknown weak acid is prepared to an initial concentration of 0.010 M. The pH i | | | | | | measured to be 3.16. The percent ionization of that weak acid is: | | | | | | a) 0.16% | b) 3.3% | c) 6.9% | d) 135% | | *ICE Table* HA(aq) H+(aq) A-(aq)0.010 Init. 0 0 Change -X **+**X **+**X 0.010 - x Equil. X $pH = 3.16 \text{ so } [H^+] = 10^{-3.16} = 6.92 \times 10^{-4} = x = [A^-]$ $percent ionization = [A^-]*100/[HA]_o = (6.92 \times 10^{-4})(100)/0.010 = 6.9\%$ - 19. A polyprotic acid is defined as an acid which: - a) releases two or more protons per molecule - b) is a polymer that is acidic - c) has both acid and base functional groups - d) all of the above - 20. Which of the following combinations makes the best buffer? - a) HCl + NaCl - b) $NH_4Cl + NH_3$ - c) $HC_2H_3O_2 + HCl$ - d) $KOH + H_2O$ - strong + neutral - weak acid + conj. base weak + strong - strong + neutral - 21. Fluorine is the most electronegative element and it stabilizes electron rich anions. Based on this, which of the following acids would be expected to be the strongest? - a) CH₃CO₂H - b) CFH₂CO₂H - c) CF₂HCO₂H - d) CF₃CO₂H - 22. How many moles of sodium acetate should be added to a 1.0 L solution of 0.040 M acetic acid to make a pH = 5.00 buffer? (acetic acid $K_a = 1.8 \times 10^{-5}$) - a) 0.023 moles - b) 0.050 moles - c) 0.070 moles - d) 1.00 moles $pH = pK_a + log[n(C_2H_3O_2\cdot(aq))/n(HC_2H_3O_2)]$ (applicable to moles due to V dropping out) $n(HC_2H_3O_2) = (1.0 \text{ L})(0.040 \text{ mol/L}) = 0.040 \text{ mol and } pK_a = -log(1.8 \times 10^{-5}) = 4.74$ $5.00 = 4.74 + log[n(C_2H_3O_2\cdot(aq))/0.040 \text{ mol}] \text{ or } 10^{0.24} = n(C_2H_3O_2\cdot(aq))/0.040 \text{ mol}$ or $n(C_2H_3O_2\cdot(aq)) = (1.74)(0.040 \text{ mol}) = 0.0695$ 23 - Bonus. Given Ka values below, which anion will make an acidic solution? a) HPO₄²- |--| - c) HC₈H₄O₄- - d) $C_2H_3O_2^{-1}$ | Acid | K _{a1} | K _{a2} | K _{a3} | |----------------|------------------------|-------------------------|-------------------------| | H_3PO_4 | 7.1 x 10 ⁻³ | 6.3 x 10 ⁻⁸ | 4.2 x 10 ⁻¹³ | | H_2CO_3 | 4.5 x 10 ⁻⁶ | 4.7 x 10 ⁻¹¹ | NA | | $H_2C_8H_4O_4$ | 1.1 x 10 ⁻³ | 3.9 x 10 ⁻⁶ | NA | | $HC_2H_3O_2$ | 1.8 x 10 ⁻⁵ | NA | NA | ion compare HPO_4^{2-} acid K_{a3} with base = K_w/K_{a2} HCO_3^{-} acid K_{a2} with base = K_w/K_{a1} result 4.2 x 10⁻¹³ vs 1.6 x 10⁻⁷ basic 4.7 x 10⁻¹¹ vs 2.2 x 10⁻⁹ basic $HC_8H_4O_4^ C_2H_3O_2^-$ acid K_{a2} with base = K_w/K_{a1} acid K_{a2} with base = K_w/K_{a1} $3.9 \times 10^{-6} \text{ vs } 9.1 \times 10^{-12} \text{ acidic}$ only has base reaction so only basic Work out Problem (12 pts) – Answer on the back of the Scantron and show work Consider the following equation: $$2H_2S(g) \leftrightarrow 2H_2(g) + S_2(g)$$ $K_C = 1.91 \times 10^{-8} \text{ (at } 1000 \text{ K)}$ If the initial concentration of $H_2S(g)$ was 0.060 M and the other species were at zero, what is the equilibrium concentration of the product, $H_2(g)$? You must show your work for full credit. If you make any simplifying assumptions, show and validate them. The equilibrium equation is: $K_C = 1.91 \times 10^{-8} = [H_2]^2[S_2]/[H_2S]^2$ Because we are only given an initial concentration, we need to set up an ICE table | | $2H_2S(g) \leftrightarrow$ | $2H_{2}(g)$ + | $S_2(g)$ | |---------|----------------------------|---------------|----------| | initial | 0.060 M | 0 | 0 | | change | -2x | +2x | +X | | equil. | 0.060 - 2x | 2x | X | Putting these into the equation, we get: $1.91 \times 10^{-8} = (2x)^2 x/(0.060 - 2x)^2$ and we see we cannot solve this without a simplifying assumption. Because K_C is a small number, we can expect that x will be small and can make the assumption that 0.060 >> 2x, replacing 0.060 - 2x with 0.060. Now, we get $1.91 \times 10^{-8} = (2x)^2 \times /(0.060)^2$ Simplifying that, we get $1.91 \times 10^{-8} = 4x^3/(0.0036)$ and $x^3 = 1.91 \times 10^{-8}(0.0036)/4 = 1.719 \times 10^{-11}$ or $$x = (1.719 \times 10^{-11})^{1/3} = 2.58 \times 10^{-4}$$ $[H_2] = 2x = 2(2.58 \times 10^{-4}) = \frac{5.2 \times 10^{-4} \text{ M}}{2.50 \times 10^{-4} \times 10^{-4} \text{ M}}$ Our assumption is valid because $2x \ll 0.060$ (can write as 0.060 vs. 0.0005 so that the equilibrium [H₂S] would barely be affected or 0.0005/0.060 = 1% change which is less than 5%)