CHEMISTRY 1B - Fall, 2015 EXAM 1 - VERSION A KEY

Use Scantron Form SC982-E and select the letter corresponding to the correct answer. Make sure to put **your full name, lab section number, and exam version** (under test no.) on the Scantron Form.

Equations and constants that you could need: 0° C = 273 K; $K_w = 1.0 \times 10^{-14}$

The quadratic equation for $ax^2 + bx + c = 0$ is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

A periodic table is provided on the last page along with a blank page to be used as scratch paper.

Part I. Multiple Choice Section. All Questions have only one correct answer. Each Question is worth 4 points.

- 1. The reaction $2NO_2(g) \leftrightarrow N_2O_4(g)$ is at equilibrium. This means that:
- a) No molecules of reactant or product are being converted any longer
- b) For every 2 molecules of NO₂ that react to form N₂O₄, one of NO₂N₂O₄ reacts backwards.
- c) The rate constants for the forward reaction and backwards reaction are equal
- d) The forward and backwards rates have decreased to zero
- 2. Given the K values for the two reactions (with the right side called a "complex"):

 $Cu^{2+}(aq) + 4NH_3(aq) \rightleftharpoons Cu(NH_3)_4(aq) K = 8 \times 10^8 \text{ and}$

 $Hg^{2+}(aq) + 4NH_3(aq) \rightleftharpoons Hg(NH_3)_4(aq)$ K = 2 x 10^{19} , we can conclude:

- a) Cu^{2+} complexes weakly with NH_3
- b) Hg²⁺ complexes more strongly with NH₃ than Cu²⁺
- c) NH₃ is a poor Lewis base
- d) Cu^{2+} and Hg^{2+} would remain mostly uncomplexed even with NH_3 present
- 3. Which of the following concentration based equilibrium equations correctly corresponds to the following chemical equation: $2CO(g) + 4H_2(g) \rightleftharpoons C_2H_5OH(g) + H_2O(g)$?

a)
$$K_C = \frac{[CO][H_2]}{[C_2H_5OH][H_2O]}$$

b)
$$K_C = \frac{[CO]^2 [H_2]^4}{[C_2 H_5 OH] [H_2 O]}$$

c)
$$K_C = \frac{[C_2H_5OH][H_2O]}{[CO][H_2]}$$

d)
$$K_C = \frac{[C_2H_5OH][H_2O]}{[CO]^2[H_2]^4}$$

- 4. In the reaction: $CO_3^{2-}(aq) + CO_2(g) + H_2O(l) \rightleftharpoons 2HCO_3^{-}(aq)$, all of the species except ____ will be included in the equilibrium equation.
- a) $CO_3^{2-}(aq)$
- b) $CO_2(g)$
- c) $H_2O(l)$
- d) HCO_3 -(aq)

5. For the reaction $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$, If the initial partial pressure of N_2 , H_2 , and NH_3 are 10.0, 10.0 and 0 atm and the equilibrium partial pressure of NH_3 is 6.0 atm, $K_P = ICE\ Table$ $N_2(a) + 3H_2(a) \rightleftharpoons 2NH_3(a)$

	- 12(8)	2(8)	(8)
Init.	10.0	10.0	0
Change	-X	-3x	+2x
Equil.	10 - x = 7.0	10 - 3(3) = 1.0	2x = 6.0

$$(x = 3) K = (6.0)^2 / [(7.0)(1.0)^3] = 5.1$$

- a) 3.6 x 10⁻³
- b) 0.06
- c) 0.14
- d) 5.1
- 6. Sulfur gases leaving a power plant exhaust stack have P_{S02} and P_{S03} equal to 1.0×10^{-2} atm and 5.0×10^{-4} atm, respectively and enter the air. If K_P for the reaction $2SO_2(g) + O_2(g) \leftrightarrow 2SO_3(g)$ is 320, in which direction with the reaction proceed if $P_{02} = 0.20$ atm? $Q = P_{S03}^2/[P_{S02}^2P_{02}] = (5.0 \times 10^{-4})^2/[(1.0 \times 10^{-2})^2(0.20)] = 0.013 < K$
- a) to the products

b) to the reactants

c) it is at equilibrium

- d) depends on ΔH
- 7. If K_C for the reaction $2Na_2O_2(s) + 2CO_2(g) \rightleftharpoons 2Na_2CO_3(s) + O_2(g)$ is 6.3×10^4 , what is the equilibrium concentration of CO_2 in M if the equilibrium concentration of O_2 is 0.0100 M?

$$K_C = 6.3 \times 10^4 = [O_2]/[CO_2]^2 = 0.0100 \text{ M}/[CO_2]^2 \text{ or } [CO_2]^2 = 0.0100/6.3 \times 10^4$$

 $[CO_2]^2 = 1.59 \times 10^{-7} \text{ or } [CO_2] = (1.59 \times 10^{-7})^{0.5} = 4.0 \times 10^{-4} \text{ M}$
a) 1.6×10^{-7} b) 4.0×10^{-4} c) 2.0×10^{-4} d) 0.020 M

8. The reaction $2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$ starts with $P_{N2} = 0.79$ atm, $P_{O2} = 0.20$ atm (and no N_2O) and proceeds to an equilibrium. The ICE table **equilibrium** partial pressures of N_2 , O_2 and N_2O (bottom row of table) will be:

 ICE Table
 $2N_2(g)$ + $O_2(g)$ = $2N_2O(g)$

 Init.
 0.79
 0.20
 0

 Change
 -2x -x +2x

 Equil.
 0.79 - 2x 0.20 - x 2x

- a) 0.79 x and 0.20 x, and +x, respectively b) 0.79 2x and 0.20 x, and +2x, respectively c) 0.79 + x and 0.20 + x, and -x, respectively d) 0.79^2 , 0.2, and $2x^2$, respectively
- 9. If at 1000° C, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ has $K = 2.0 \times 10^{-9}$ and $N_2(g) + 2O_2(g) \rightleftharpoons 2NO_2(g)$ has K = 38, then $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ has K = 38.

if first rxn is 1 and 2^{nd} is 2, we can see that 3^{rd} rxn is 2 + -1 (-1 means in reverse direction). Thus $K = K_2/K_1 = 38/2.0 \times 10^{-9} =$

- a) 5.3 x 10⁻¹¹
- b) 7.6 x 10⁻⁸
- c) 38
- d) 1.9 x 10¹⁰
- 10. The reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ reaches an equilibrium in a sealed 1.0 L flask. This reaction is endothermic. Which of the following changes will result in a shift toward the products?
- a) decreasing the flask temperature
- b) increasing the flask volume

c) adding a catalyst

d) removing through N₂O₄ condensation

11. In the reaction: $Al(H_2O)_6^{3+}(aq) + H_2O(l) \rightleftharpoons Al(H_2O)_5OH^{2+}(aq) + H_3O^{+}(aq)$, the Bronsted-Lowry acid (in the direction shown) is: a) $Al(H_2O)_6^{3+}(aq)$ b) $H_2O(l)$ c) $Al(H_2O)_5OH^{2+}(aq)$ d) $H_3O^{+}(aq)$				
12. A Lewis acid a) a compound tl c) an electron pa	nat produces H+ i		on donor ively charged acid	
13. Which of the following salt solutions is neutral? a) KOH b) NH ₄ Cl c) Na ₂ CO ₃ d) KNO ₃ OH- and CO ₃ ²⁻ are basic and NH ₄ + is acidic (other ions are all neutral)				
14. Which of the following acids has the strongest conjugate base (conjugate base with the greatest K_b)? a) HSO_4 (p $K_a = 2.00$) b) HF (p $K_a = 3.17$) c) N_2H_5 (p $K_a = 7.98$) d) HCN (p $K_a = 9.24$) $K_w = K_aK_b$ or $14 = pK_a + pK_b$ or $pK_b = 14 - pK_a$ (smallest pK_b is strongest)				
15. What is the pH of a $0.0050 \text{ M Ba}(OH)_2$ solution? (Note: K_w given on p. 1) a) 0.01 b) 2.00 c) 11.70 d) 12.00 [OH-] = $2[Ba(OH)_2]_0 = 0.010 \text{ M}$ and pH = $14 - pOH = 14 + log[OH-] = 12.00$				
16. A solution has a pH of 4.89. [H+] is: a) 7.8×10^{-10} b) 1.3×10^{-5} c) 7.5×10^{-3} d) 0.69 [H+] = $10^{-4.89}$				
17. What is the pH of a 0.20 M $HC_2H_3O_2$ acid ($K_a = 1.8 \times 10^{-5}$)?				
a) 0.70	b) 2.72	c) 4.74	d) 7.00	
ICE Table	$HC_2H_3O_2(aq)$	\rightleftharpoons $H^+(aq)$ +	$C_2H_3O_2$ (aq)	
Init.	0.20	0	0	
Change	-X	+X	+X	
Equil.	$0.20 - x \sim 0.20$	X	X	
$K_a = 1.8 \times 10^{-5} = x^2/(0.20) \text{ or } x = (3.6 \times 10^{-6})^{0.5} = 1.9 \times 10^{-3} \text{ M pH} = -\log(1.9 \times 10^{-3})$				
18. An unknown weak acid is prepared to an initial concentration of 0.010 M. The pH i				
measured to be 3.16. The percent ionization of that weak acid is:				
a) 0.16%	b) 3.3%	c) 6.9%	d) 135%	

ICE Table HA(aq) H+(aq) A-(aq)0.010 Init. 0 0 Change -X **+**X **+**X 0.010 - x Equil. X

 $pH = 3.16 \text{ so } [H^+] = 10^{-3.16} = 6.92 \times 10^{-4} = x = [A^-]$ $percent ionization = [A^-]*100/[HA]_o = (6.92 \times 10^{-4})(100)/0.010 = 6.9\%$

- 19. A polyprotic acid is defined as an acid which:
- a) releases two or more protons per molecule
- b) is a polymer that is acidic
- c) has both acid and base functional groups
- d) all of the above
- 20. Which of the following combinations makes the best buffer?
- a) HCl + NaCl
- b) $NH_4Cl + NH_3$
- c) $HC_2H_3O_2 + HCl$
- d) $KOH + H_2O$

- strong + neutral
- weak acid + conj. base weak + strong
- strong + neutral
- 21. Fluorine is the most electronegative element and it stabilizes electron rich anions. Based on this, which of the following acids would be expected to be the strongest?
- a) CH₃CO₂H
- b) CFH₂CO₂H
- c) CF₂HCO₂H
- d) CF₃CO₂H
- 22. How many moles of sodium acetate should be added to a 1.0 L solution of 0.040 M acetic acid to make a pH = 5.00 buffer? (acetic acid $K_a = 1.8 \times 10^{-5}$)
- a) 0.023 moles
- b) 0.050 moles
- c) 0.070 moles
- d) 1.00 moles

 $pH = pK_a + log[n(C_2H_3O_2\cdot(aq))/n(HC_2H_3O_2)]$ (applicable to moles due to V dropping out) $n(HC_2H_3O_2) = (1.0 \text{ L})(0.040 \text{ mol/L}) = 0.040 \text{ mol and } pK_a = -log(1.8 \times 10^{-5}) = 4.74$ $5.00 = 4.74 + log[n(C_2H_3O_2\cdot(aq))/0.040 \text{ mol}] \text{ or } 10^{0.24} = n(C_2H_3O_2\cdot(aq))/0.040 \text{ mol}$ or $n(C_2H_3O_2\cdot(aq)) = (1.74)(0.040 \text{ mol}) = 0.0695$

23 - Bonus. Given Ka values below, which anion will make an acidic solution?

a) HPO₄²-

|--|

- c) HC₈H₄O₄-
- d) $C_2H_3O_2^{-1}$

Acid	K _{a1}	K _{a2}	K _{a3}
H_3PO_4	7.1 x 10 ⁻³	6.3 x 10 ⁻⁸	4.2 x 10 ⁻¹³
H_2CO_3	4.5 x 10 ⁻⁶	4.7 x 10 ⁻¹¹	NA
$H_2C_8H_4O_4$	1.1 x 10 ⁻³	3.9 x 10 ⁻⁶	NA
$HC_2H_3O_2$	1.8 x 10 ⁻⁵	NA	NA

ion compare

 HPO_4^{2-} acid K_{a3} with base = K_w/K_{a2} HCO_3^{-} acid K_{a2} with base = K_w/K_{a1} result 4.2 x 10⁻¹³ vs 1.6 x 10⁻⁷ basic 4.7 x 10⁻¹¹ vs 2.2 x 10⁻⁹ basic

 $HC_8H_4O_4^ C_2H_3O_2^-$ acid K_{a2} with base = K_w/K_{a1} acid K_{a2} with base = K_w/K_{a1}

 $3.9 \times 10^{-6} \text{ vs } 9.1 \times 10^{-12} \text{ acidic}$

only has base reaction so only basic

Work out Problem (12 pts) – Answer on the back of the Scantron and show work Consider the following equation:

$$2H_2S(g) \leftrightarrow 2H_2(g) + S_2(g)$$
 $K_C = 1.91 \times 10^{-8} \text{ (at } 1000 \text{ K)}$

If the initial concentration of $H_2S(g)$ was 0.060 M and the other species were at zero, what is the equilibrium concentration of the product, $H_2(g)$? You must show your work for full credit. If you make any simplifying assumptions, show and validate them.

The equilibrium equation is: $K_C = 1.91 \times 10^{-8} = [H_2]^2[S_2]/[H_2S]^2$

Because we are only given an initial concentration, we need to set up an ICE table

	$2H_2S(g) \leftrightarrow$	$2H_{2}(g)$ +	$S_2(g)$
initial	0.060 M	0	0
change	-2x	+2x	+X
equil.	0.060 - 2x	2x	X

Putting these into the equation, we get: $1.91 \times 10^{-8} = (2x)^2 x/(0.060 - 2x)^2$ and we see we cannot solve this without a simplifying assumption. Because K_C is a small number, we can expect that x will be small and can make the assumption that 0.060 >> 2x, replacing 0.060 - 2x with 0.060.

Now, we get $1.91 \times 10^{-8} = (2x)^2 \times /(0.060)^2$

Simplifying that, we get $1.91 \times 10^{-8} = 4x^3/(0.0036)$ and $x^3 = 1.91 \times 10^{-8}(0.0036)/4 = 1.719 \times 10^{-11}$

or
$$x = (1.719 \times 10^{-11})^{1/3} = 2.58 \times 10^{-4}$$

 $[H_2] = 2x = 2(2.58 \times 10^{-4}) = \frac{5.2 \times 10^{-4} \text{ M}}{2.50 \times 10^{-4} \times 10^{-4} \text{ M}}$

Our assumption is valid because $2x \ll 0.060$ (can write as 0.060 vs. 0.0005 so that the equilibrium [H₂S] would barely be affected or 0.0005/0.060 = 1% change which is less than 5%)