Chemistry 1B, Fall 2015 Quiz #6A KEY

You must show your work for full credit.

Exp 5 Questions

- <u>1.</u> An ammonia buffer is made by adding 15.0 mL of 0.100 M NH₃ solution to 35.0 mL of 0.120 M NH₄Cl. For the following calculations, you can assume that this buffer behaves as a traditional buffer. $K_a(NH_4^+ ion) = 5.6 \times 10^{-10}$.
- a) Calculate the pH of this solution. (2 pt)

 $pH = pK_a + log([NH_3]/[NH_4^+])$ or $= pK_a + log[n(NH_3)/n(NH_4^+)]$ (moles used so we don't need to recalculate diluted concentrations)

 $pH = -log(5.6 \times 10^{-10}) + log[(0.0015 \text{ mol})/(0.0042 \text{ mol})] = 9.25 + log(0.357) = 9.25 - 0.45 = 8.80$ using 1^{st} equation and dilution, pH = 9.25 + log[(0.0300 M)/(0.084 M)] = 9.25 + log(0.357) = 8.80 Can also use the K_a equation directly as in lab manual

b) Now 5.0 mL of 0.100 M NaOH is added to the buffer. What is the new pH? Be sure to show the reaction that happens from addition of NaOH. (3 pts)

Added OH⁻ reacts with the acid form in the reaction shown below. Since the equilibrium constant $(1/K_b)$ strongly favors the products, OH⁻ will be used up converting NH₄⁺ to NH₃. This can be expressed quantitatively by making a mole table (see below), which first requires a calculation of the moles of OH⁻ added. Moles(OH⁻) = (0.0050L)(0.100 mol/L) = 0.0005 mol

 $OH^{-}(aq) + NH_4^{+}(aq) \leftrightarrow NH_3(aq) + H_2O(l)$

initially: 0.0005 0.0042 0.0015 change: -0.0005 -0.0005 +0.0005 full right: 0 0.0037 0.0020

Now, the H-H equation can be used: $pH = pK_a + log[n(NH_3)/n(NH_4^+)] = 9.25 - 0.54 = 8.98$

c) The original buffer (no addition of NaOH) is diluted to a total of 100.0 mL. What is the new pH? Explain your answer. (1 pt)

pH = 8.80 (or same answer as in a)). Dilution reduces NH_3 and NH_4 by the same factor – the ratio of concentrations stays the same.

Solubility problem

- $\underline{2}$. Chromate, CrO_4^{2-} , is a toxic form of chromium (in the +6 oxidation state). It is desired to separate CrO_4^{2-} from SO_4^{2-} in a mixture that contains CrO_4^{2-} and SO_4^{2-} at concentrations of 0.080 and 0.020 M, respectively. The K_{sp} values for $SrCrO_4$ and $SrSO_4$ are 3.6 x 10^{-5} and 3.44 x 10^{-7} , respectively.
- a) Which ion will precipitate first as Sr²⁺ is added? (**1 pt**)

We can calculate $[Sr^{2+}]$ when each ion first precipitates. $K_{sp}(SrCrO_4) = [Sr^{2+}][CrO_4^{2-}]$ or solving for $[Sr^{2+}]$, $[Sr^{2+}] = 3.6 \times 10^{-5}/[CrO_4^{2-}] = 4.5 \times 10^{-4}$ M. For $[SO_4^{2-}]$, $[SO_4^{2-}] = 3.44 \times 10^{-7}/0.020 = 1.72 \times 10^{-5}$ M. Since Sr^{2+} precipitates out at a lower concentration for SO_4^{2-} , SO_4^{2-} precipitates first. Note: can also compare K_{sp} (not always accurate but reasonable in this case).

(continued on back)

Chemistry 1B, Fall 2015 Quiz #6A KEY

b) Perform calculations to show whether it is possible to isolate CrO_4^{2-} from 99% of the SO_4^{2-} present by Sr^{2+} addition (assume no dilution occurs in the Sr^{2+} addition). (Hint: 99% removal means 1% left). (3 pts)

Having done the calculations in part a), we can use $[Sr^{2+}]$ at the start of CrO_4^{2-} precipitation to determine the equilibrium $[SO_4^{2-}]$ left at that Sr^{2+} level. $K_{sp}(SrSO_4) = [Sr^{2+}][SO_4^{2-}]$ or $[SO_4^{2-}] = 3.44 \times 10^{-7}/4.5 \times 10^{-4} = 7.64 \times 10^{-4} M$

Now we can determine what percent of the original SO_4^{2-} is left in the solution that contains the CrO_4^{2-} that we are trying to isolate.

 $\% = (7.64 \times 10^{-4} \text{ M})*100/0.020 = 3.8\%$. In order to meet our separation criteria, we needed to remove 99+% of sulfate and this shows that it is not possible to isolate chromate at the desired level. Note: one can also calculate whether at 1% of original sulfate precipitation, whether chromate would already have started precipitating. $(0.01)(0.020) = 2.0 \times 10^{-4} \text{ M}$ and then Sr^{2+} in equilibrium will have concentration = $K_{sp}(SrSO_4)/[SO_4^{2-}] = 1.7 \times 10^{-3}$ or $Q = [Sr^{2+}][CrO_4^{2-}] = (1.7 \times 10^{-3})(0.080) = 1.4 \times 10^{-4} > K_{sp}(SrCrO_4)$. Since Q > K, precipitation of chromate would occur before getting to 1% of the initial sulfate.