Chemistry 1B, Fall 2015

Make Up Quiz Ver A KEY (Not copied by mistake)

Each question worth 2 points

Strong ligands: $CN^- > NO_2^- > en > NH_3$ Weak ligands: $H_2O > OH^- > F^- > Cl^- > Br^-$
1. In the coordination complex, $[Ag(NH_3)_2]^+$, the electrons binding the Ag^+ to the NH_3 come from a) the Ag^+ 5s electrons b) the Ag^+ 4d electrons c) the NH_3 2s electrons d) the NH_3 lone pair electrons Ag^+ has no valence (5s) electrons, so bonding electrons must come from ligand and comes from ligand lone pair.
 If a coordination complex has bidentate ligands and octahedral geometry, how many ligands does it have? a) 1 ligand b) 2 ligands c) 3 ligands d) 4 ligands e) 6 ligands bidentate means two bonds per ligand, octahedral means 6 bonds, so 6/2 = 3 bonds per ligand
3. The complex $[Co(NO_2)_6]^{4-}$ will have how many unpaired d electrons: a) 0 b) 1 c) 2 d) 3 e) 4 Co^{2+} is a d^7 metal. NO_2^{-} is a strong ligand leading to a low spin state with 6 paired off-axis d electrons and 1 unpaired on-axis d electron
4. The coordination complex $[Ni(en)_3]^{2+}$ absorbs yellow light (at 560 nm). Calculate Δ in kJ/mol. Constants: h = Planck's constant = 6.63 x 10^{-34} J·s, c = speed of light = 3.00 x 10^8 m/s and Avogadro's Number = 6.02×10^{23} .
a) 214 kJ/mol b) 0.214 kJ/mol c) 21 kJ/mol d) $83,113 \text{ kJ/mol}$ $E = hc/\lambda = (6.63 \times 10^{-34} \text{ J·s})(3.00 \times 10^8 \text{ m/s})/(560 \times 10^{-9} \text{ m}) = 3.55 \times 10^{-19} \text{ J/complex}$ $E = (3.55 \times 10^{-19} \text{ J/complex})(6.02 \times 10^{23} \text{ complex/mol})(1 \text{ kJ/1000 J}) = 214 \text{ kJ/mol}$
5. Which coordination compound will absorb light at the longest wavelength? a) $[ZnCl_4]^{2-}$ b) $[Fe(H_2O)_6]^{2+}$ c) $[Fe(H_2O)_6]^{3+}$ d) $[FeBr_6]^{4-}$ last complex has weakest ligand and is Fe^{2+} (causes smaller gap than more highly charged Fe^{3+})