CHEMISTRY 31 EXAM 1 Oct. 5, 2016

NAME	LAB SECTION #

Some Useful Equations and Constants:

Propagation of uncertainty:

$$y = a + b \text{ or } y = a - b$$
 $y = a \cdot b \text{ or } y = a / b$ $y = a^n$ $y = \sqrt{S_a^2 + S_b^2}$ $y = \sqrt{\left(\frac{S_a}{a}\right)^2 + \left(\frac{S_b}{b}\right)^2}$ $y = a^n$ Note: $y = a^n$ With no uncertainty

Statistics:

$$S = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$$

Grubbs Test:
$$G_{calculated} = \frac{\left|x_{suspect} - \overline{x}\right|}{S}$$
 F-Test: $F_{calc} = S_1/S_2$ (where $S_1 > S_2$)

Thermodynamics:

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$
 $\Delta G^{\circ} = -RT \ln K$ (at equilibrium) $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$, $0^{\circ}\text{C} = 273.15 \text{ K}$

The quadratic equation for
$$ax^2 + bx + c = 0$$
 is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

- **A. Multiple Choice/Fill in the Blank Section.** Only one correct answer for multiple choice questions. (4 points for each question)
- 1. The SI base units for length, mass, time and amount are:
- a) meter, kilogram, second, and mole
- b) centimeter, gram, second, and mole
- c) meter, pound, minute and dozen
- d) meter, gram, minute, and mole.
- 2. A concentration is given in parts per million by mass. An equivalent way of expressing this which is true for any solvent is:
- a) (g solute/g solvent)*10⁶

b) (g solute)/(10⁶ g solution)

c) (µg solute/kg solution)

- d) (µg solute)/(L solution)
- 3. A student calibrating a burst in a 0 to 40 mL interval finds that the true volume delivered is 0.07 ± 0.02 mL (mean \pm uncertainty) greater than measured volume. When performing a titration with a measured volume of about 40 mL, the student should:
- a) ignore the difference the measured volume is the true volume
- b) ignore the difference it is insignificant
- c) subtract 0.07 mL from the measured volume
- d) add 0.07 mL to the measured volume

4. In the calculation answer?	on 98.32 - 7.1, how	many significant fig	gures should be used to express the	
a) 2	b) 3	c) 4	d) 5	
comparing the pre sample 6 times by the two methods.	cision of her methor her method and the	od compared to a sta ne standard method to to use to compare pr	are glucose in blood. She is interested in ndard method. She measures one blood to compare the standard deviations from recision? d) Grubb's test	
	desired. A case 1		lard deviations, under the 1% relative ificant systematic errors of over 5%.	
a) accurate and pro			ut not accurate	
c) accurate but not	t precise	d) neither a	ecurate nor precise	
purpose of analyzi a) determine m an b) determine if res c) determine if the d) determine if the	ing standards for u d b in the equation sponse is related to e analysis is accura e uncertainty is from	se with a linear least of a line to be used concentration te for unknown com m the response or the	roportional to concentration. The main squares calibration in this case is to: in the analysis of unknowns pounds a concentration of standards $K = 2.8 \times 10^8$ and for $K = 2.8 \times 10^8$ and for $K = 2.8 \times 10^8$	
	$K = 1.8 \times 10^{-5}, K$		$_2$ H(aq) \leftrightarrow Hg(CH ₃ CO ₂) $_2$ (aq) + 2H ⁺ , is:	
9. A reaction requ This reaction is:	uires heat (the reac	tion container cools)	and leads to an increase in disorder.	
a) spontaneous atd) never spontaneous	, -	ntaneous at low T	c) spontaneous at high T	
10. For the exother reaction to the pro		$_3(aq) + H^+ \leftrightarrow NH_4^+,$	which of the following will shift the	
a) adding water (d			g the temperature	
c) adding a strong	acid (e.g. HCl)	d) bubble N	2 gas through to remove NH ₃ as a gas	
B. Problem Section. Show all needed calculations to receive full credit. The number of points are shown in parentheses. Use the back side of the page if needed. 1. AgNO ₃ (aq) is being added to precipitate out Cl ⁻ . Calculate the volume of 0.40 M AgNO ₃ (in mL) that should be added to 0.61 g of NaCl (formula weight = 58.44 g/mol) so that there is a 10. % excess. (8 pts)				

2. A metal object is chrome plated by electrical deposition. It is desired to determine the
thickness of the chrome plating. The metal object weighs 142.11 ± 0.02 g before plating and
151.98 ± 0.02 g after plating. Given that chrome plating volume = (object surface area)(plating
thickness), chrome density = 7.83 ± 0.04 g/cm ³ , and the object surface area = 61.1 ± 0.5 cm ² ,
determine the thickness and uncertainty in thickness (in cm). Give to the correct number of
significant figures. (14 pts)

Bonus -3 pts) Which uncertainty contributed the most to the overall uncertainty?

3. A standard of MTBE (methyl tertiary butyl ether) in gasoline, was analyzed 4 times to test a method. The measured values were: 0.81 wt %, 0.68 wt %, 0.73 wt %, and 0.79 %.
a) Using the table below, give the 95% confidence value about the mean using the correct number of significant figures. (8 pts)

Degrees of freedom	3	4	5
t-value (at 95% level)	3.18	2.776	2.571

b) If the true MTBE standard concentration was 0.67 wt %, determine if there was a significant bias in the method at the 95% confidence level. Fully explain your answer. (6 pts)

4. It is desired to measure the concentration of CO emitted from cars. Standards ranging from 25 to 500 ppmv are prepared and analyzed by a CO analyzer giving the following equation for the calibration line:
(9 pts)
5. The equilibrium constant for the reaction: MnCO ₃ (s) \leftrightarrow Mn ²⁺ + CO ₃ ²⁻ is 5.3 x 10 ⁻¹⁰ at 25°C. Determine the value of ΔG° in kJ/mol for the reaction. (7 pts)
6. Given that the K_{sp} for MgF2 is 3.9 x $10^{\text{-}11}$, determine the solubility of MgF2 in water in mol/L. (8 pts)