CHEMISTRY 31 EXAM 2 Nov. 9, 2016

N.	A	Ν	Æ					

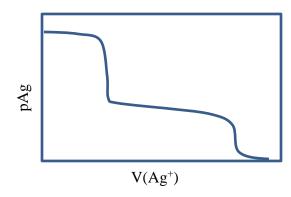
Some Useful Constants:

 $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1} \text{ } 0^{\circ}\text{C} = 273 \text{ K}$

 K_w (autoprotolysis constant for H_2O) = 1.0 x 10^{-14}

h = Planck's constant = $6.63 \times 10^{-34} \text{ J} \cdot \text{s}$; c = speed of light = $3.00 \times 10^8 \text{ m s}^{-1}$

- **A. Multiple Choice/Fill in the Blank Section.** Only one correct answer for multiple choice questions. (4 points for each question)
- 1. The cation and anion of an insoluble salt are mixed together. In order to determine if precipitation is likely, the best thing to look at is:
- a) If the value of K_{sp} for the pair is $< 10^{-5}$
- b) If Q (for K_{sp} reaction) exceeds K_{sp}
- c) If the salt stoichiometry is 2:1 (cation: anion) or higher
- d) There is no way to predict if precipitation is likely
- 2. In the reaction: NH_3 (aq) + H_2O (l) $\rightleftharpoons NH_4^+$ (aq) + OH^- (aq), NH_4^+ (aq) can be identified as:
- a) the Lewis base

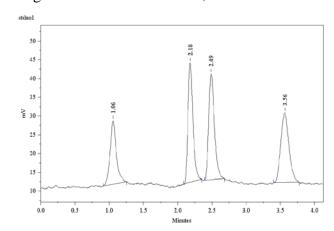

b) the conjugate acid

c) the conjugate base

- e) the Lewisonium ion
- 3. Given the weak acids listed in the table and their pK_a values, which base is the strongest?

Acid	HSCN	HF	HONH ₃ ⁺	HBO ₃	
pKa	0.89	3.17	5.96	9.24	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 \ 7777	\	1) 11 DO	<u> </u>	

- a) NaSCN
- b) KF
- c) HONH₂
- d) NaBO₃
- 4. Which of the following requirements is needed for a titration to be successful?
- a) the equlibrium constant for the reaction must be large
- b) reactants must react with 1:1 stoichiometry
- c) a reactant or product must be colored
- d) the titrant needs to be made from a primary standard
- 5. A mixture of I^- and Cl^- is analyzed by precipitation titration by adding Ag^+ from a buret (K_{sp} for AgI and AgCl are 8.3×10^{-17} and 1.8×10^{-8} , respectively). By looking at the titration plot (to right), we can see that:
- a) Cl⁻ precipitates out first
- b) The unknown contains more I⁻ than Cl⁻
- c) The unknown contains more Cl⁻ than I⁻
- d) Neither endpoint is sharp



- 6. A standardization titration is most common where:
- a) a titrant is available as a primary standard
- b) a back titration cannot be used
- c) a titrant cannot be prepared accurately from solids
- d) no standards of the analyte exist
- 7. The purpose of a monochromator is to:
- a) detect light transmitted through the sample in a spectrometer
- b) select a single ion in an ion chromatograph
- c) to detect gases leaving a gas chromatograph
- d) to select a single wavelength of light in a spectrometer
- 8. Absorption of light causing changes in outer shell electron states is caused by:
- a) X-rays
- b) ultraviolet light
- c) microwaves
- d) radio waves
- 9. In open tubular gas chromatography columns, the stationary phase is most commonly:
- a) a thin coating bonded to the inside of a narrow column
- b) a coating on packing material in a column
- c) the surface of packing material in a column
- d) an organic compound collected from waves off of Hawaii
- 10. A normal phase HPLC method is used to separate phenols using a mobile phase of 80% hexane and 20% 2-propanol (a polar organic molecule). There is not enough separation to resolve some phenols. In order to increase retention factors, the chemist should:
- a) decrease the temperature
- b) increase the % 2-propanol
- c) decrease the % 2-propanol
- d) increase the flow rate
- **B. Problem Section.** Show all needed calculations to receive full credit. The number of points are shown in parentheses. Use the back side of the page if needed.
- 1. A solution contains chromate, CrO_4^{2-} , at 0.080 M, and chloride at 0.050 M and it is desired to separate the two ions. Both form sparingly soluble salts with Ag^+ . The K_{sp} values for Ag_2CrO_4 and AgCl are 1.12 x 10^{-12} and 1.77 x 10^{-10} , respectively.
- a) Calculate $[Ag^+]$ when each anion starts precipitating (2 calculations) and decide which anion precipitates out first. (5 pt)
- b) Calculate the concentration of the first anion to precipitate when enough Ag^+ has been added so that $[Ag^+]$ is just high enough to start precipitating the second anion. (5 pts)

2. Mercury(II) ion (Hg^{2+}) reacts with $CH_3CO_2^-$ in the reaction, $Hg^{2+} + 2CH_3CO_2^- \leftrightarrow Hg(CH_3CO_2)_2(aq)$ forming a complex ion $(K = 2.82 \times 10^8)$. Calculate the ratio of $Hg(II)$ in the complexed $(Hg(CH_3CO_2)_2(aq))$ to uncomplexed form if $CH_3CO_2^-$ is present at equilibrium at 0.0050 M. (6 pts)
3. A 25.0 mL aliquot of a sample containing an unknown concentration of Cl^- is titrated by addition of Ag^+ . It takes 37.11 mL of 0.00800 M Ag^+ to reach an end point. $K_{sp}(AgCl) = 1.77 \times 10^{-10}$
a) What is the concentration of Cl ⁻ in the sample. (5 pts)
b) What is [Ag ⁺] when 35.0 mL of Ag ⁺ has been added? (10 pts)
BONUS. Calculate [Ag ⁺] at the equivalence point. (3 pts)
4. Calculate the wavelength in nm of light with a wavenumber of 3300 cm ⁻¹ . (4 pts)

5. Calculate the molar concentration of benzene in a sample if the sample is placed in a cuvette with a 1.00 cm pathlength, a transmittance of 0.783 is read, and benzene has a molar absorptivity of $98.6 \,\mathrm{M}^{-1}$ cm⁻¹ at $268 \,\mathrm{nm}$. (8 pts)

- 6. Given the following reverse-phase HPLC chromatogram and data table below, determine:
- a) the retention factor for adenosine (3 pts)
- b) the resolution between uracil and sulfanilamide (4 pts)

- c) which compound is the least polar (explain). (3 pts)
- d) The plate number (N) based on the adenosine peak. (4 pts)
- e) The plate height (H) if the column used for the separation was 150 mm length x 4.6 mm diameter. (3 pts)

Data Table

Peak #	Ret Time	Name	Area (mV*s)	Peak Width
	(min.)			(min.)
1	1.056	Unretained	1074.343	
2	2.182	uracil	1617.349	0.136
3	2.489	sulfanilamide	1645.061	0.155
4	3.564	adenosine	1525.604	0.219