CHEMISTRY 31

Quiz 5 - 10 minutes Fall, 2016

Name _____

Using activities (but not needing to use the systematic method), calculate the pH for a solution containing 0.0050 M Ba(OH)₂. The K_w (dissociation constant) of water is 1.0×10^{-14} . Assume that Ba²⁺ does not react any further in water.

a) What is the ionic strength of the solution? (4 pts)

 $Ba(OH)_2 \rightarrow Ba^{2+} + 2OH^{-}$ so $[Ba^{2+}] = 0.0050 \text{ M}$ and $[OH^{-}] = 0.010 \text{ M}$ $\mu = 0.5\{[Ba^{2+}](+2)^2 + [OH^{-}](-1)^2\} = 0.5(0.0050 \cdot 4 + 0.010 \cdot 1) = 0.5(0.030) = 0.015 \text{ M}$

b) Using the activity coefficient table (below) and the true definition of the pH, determine the pH (4 sig fig.s) of the solution. (6 pts)

		Activity	Coefficients	
Ionic Strength	0.005 M	0.010 M	0.015 M	0.030 M
H^+	0.934	0.913	0.900	0.874
OH-	0.926	0.900	<mark>0.882</mark>	0.844

(Select the closest the ionic strength closest to your calculated value from a)). The systematic approach is not needed.

 $K_{w} = \gamma(H^{+})[H^{+}]\gamma(OH^{-})[OH^{-}] \text{ and } pH = -\log\{\gamma(H^{+})[H^{+}]\} = -\log\{K_{w}/\gamma(OH^{-})[OH^{-}]\}$ $pH = -\log[1.0 \ x \ 10^{-14}/(0.882 \cdot 0.010)] = -\log(1.13 \ x \ 10^{-12}) = 11.95$ Note: can also solve as $pH = 14 - pOH = 14 + \log\{\gamma(OH^{-})[OH^{-}]\}$