CHEMISTRY 31

Quiz 2-10 minutes
Solutions

1. A student needs to weigh out about 1 g of Mg but his balance is broken. Instead, he cuts of a length of Mg rod and measures its length and width. The rod's diameter is $0.231 \pm 0.004 \mathrm{~cm}$ and its length is $19.2 \pm 0.3 \mathrm{~cm}$. Given that the density of Mg is $1.738 \mathrm{~g} / \mathrm{cm}^{3}$ and the equation for the volume of a cylinder (rod) of diameter d and length L is $\mathrm{V}=\pi \mathrm{d}^{2} \mathrm{~L} / 4$, calculate the mass of Mg and the absolute uncertainty in the mass (both in g with the proper number of sig figs).
```
mass \(=\rho \mathrm{V}\) (where \(\rho=\) density)
mass \(=\rho \pi \mathrm{d}^{2} \mathrm{~L} / 4=\left(1.738 \mathrm{~g} / \mathrm{cm}^{3}\right) \pi(0.231 \pm 0.004 \mathrm{~cm})^{2}(19.2 \pm 0.3 \mathrm{~cm}) / 4\)
```

At this point, we can, hopefully, recognize that this is a mixed operations problem because it has an exponent and then multiplication and division.
For the first step, we can calculate d^{2} and $\mathrm{S}_{\mathrm{d} \wedge 2}$:
$\mathrm{d}^{2}=(0.231 \mathrm{~cm})^{2}=0.05336 \mathrm{~cm}^{2}$ and $\mathrm{S}_{\mathrm{d} \wedge} / \mathrm{d}^{2}=2 \mathrm{~S}_{\mathrm{d}} / \mathrm{d}=2(0.004 \mathrm{~cm}) /(0.231 \mathrm{~cm})=0.0346$
[note: we can convert this back to an absolute uncertainty, but we don't need to because in the next step (multiplication/division) we need it as a relative uncertainty]
mass $=\left(1.738 \mathrm{~g} / \mathrm{cm}^{3}\right) \pi\left(0.05336 \mathrm{~cm}^{2} \pm 0.0346\right.$ rel. unc. $)(19.2 \pm 0.3 \mathrm{~cm}) / 4=1.3985 \mathrm{~g}$
$\mathrm{S}_{\text {mass }} /$ mass $=\left[\left(\mathrm{S}_{\mathrm{d} \wedge 2} / \mathrm{d}^{2}\right)^{2}+\left(\mathrm{S}_{\rho} / \mathrm{P}\right)^{z}+\left(\mathrm{S}_{\mathrm{L}} / \mathrm{L}\right)^{2}\right]^{0.5}=\left[(0.0346)^{2}+(0.3 / 19.2)^{2}\right]^{0.5}$
$\mathrm{S}_{\text {mass }} / \mathrm{mass}=0.0380$ or $\mathrm{S}_{\text {mass }}=0.0380 *(1.3985 \mathrm{~g})=0.0531 \mathrm{~g}$
mass $\pm \mathrm{S}_{\text {mass }}=1.3985 \pm 0.0531 \mathrm{~g}$ or $=\mathbf{1 . 4 0} \pm \mathbf{0 . 0 5} \mathbf{g}$ (correct \# sig figs)

