CHEMISTRY 31 - April 29

Quiz 5 - Solutions

1. 3-nitrophenol, $\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{OH}$, is a monoprotic weak acid with a $\mathrm{pK}=8.37$. The salt, sodium 3-nitropenolate, $\mathrm{Na}^{+} \mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{O}^{-}$, is dissolved in water to make a solution with a molarity of 0.024 M . It is desired to know the pH of the solution. $\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$.

Quadratic equation for $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0 \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Sodium 3-nitropenolate, $\mathrm{Na}^{+} \mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{O}^{-}$, will dissociate into Na^{+}and $\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{O}^{-}$in water and we can abbreviate $\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{O}^{-}$as A^{-}. A^{-}is the conjugate base of a weak acid, so will react as a base in water: $\quad A^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow H A+\mathrm{OH}$ and we can solve by setting up an ICE table:
init. $0.024 \quad 0 \quad 0$
change $-x+x+x$
equil
$0.024-x$
$x \quad x$
The equilibrium constant for the above reaction is $K_{b}=K_{w} / K_{a}=10^{-14} / 10^{-8.37}=2.34 \times 10^{-6}$
Now we can set up the equation: $K_{b}=[\mathrm{HA}][\mathrm{OH}] /\left[\mathrm{A}^{-}\right]=x^{2} /(0.024-x)$
This can be simplified by assuming $x \ll 0.024$ (we need to check this later)
$2.34 \times 10^{-6}=x^{2} / 0.024$ or $x=\left[\left(2.34 \times 10^{-6}\right)(0.024)\right]^{0.5}=2.37 \times 10^{-4} \mathrm{M}($ which is $\ll 0.024)$
$p H=14-p O H=14+\log \left(2.37 \times 10^{-4} \mathrm{M}\right)=\mathbf{1 0 . 3 8}$

