CHEMISTRY 31

Quiz 2 - 10 minutes Spring, 2017

Name	Lab Section
that is $21.6\pm0.5\%$ methanol.	to prepare a standard. A chemist has a stock standard solution is needed to deliver 0.200 g of methanol?
b) If the uncertainty in the mass of solution the mass of methanol delivered? (4 pts) For $Y=a*b$, $S_Y/Y=[(S_a/a)^2+(S_b/b)^2]^{0.5}$	delivered in a) is ± 0.002 g, what is the uncertainty in
2. A test sample is analyzed for testosterone using a new method. The measured value is 38.11 ± 0.02 mg/L (second number is standard deviation) while the true value is 27.1 mg/L. It is desired to have % errors under 5% and % relative standard deviations under 2%. We can conclude that the measurement is: a) precise and accurate b) precise but not accurate c) accurate but not precise d) neither precise nor accurate (3 pts)	