CHEMISTRY 31

Quiz 2 - SOLUTIONS

Spring, 2017

1. A solution requires 0.200 g of methanol to prepare a standard. A chemist has a stock standard that is $21.6 \pm 0.5 \%$ methanol.
a) How many grams of the 21.6% methanol solution is needed to deliver 0.200 g of methanol?
(3 pts)
$m($ methanol $) / m($ sol'n $)=21.6 / 100$ or $m($ sol'n $)=m($ methanol $) / 0.216=0.200 \mathrm{~g} / 0.216=\mathbf{0 . 9 2 6} \boldsymbol{g}$
b) If the uncertainty in the mass of solution delivered in a) is $\pm 0.002 \mathrm{~g}$, what is the uncertainty in the mass of methanol delivered? (4 pts)
For $\mathrm{Y}=\mathrm{a} * \mathrm{~b}, \mathrm{~S}_{\mathrm{Y}} / \mathrm{Y}=\left[\left(\mathrm{S}_{\mathrm{a}} / \mathrm{a}\right)^{2}+\left(\mathrm{S}_{\mathrm{b}} / \mathrm{b}\right)^{2}\right]^{0.5}$
m (methanol) $=m($ sol'n)*21.6/100
$S_{m(\text { methanol })} / m($ methanol $)=\left[\left(S_{m(\text { sol'n } n} / m(\text { sol'n })\right)^{2}+\left(S_{\%} / \%\right)^{2}\right]^{0.5}$
$S_{m(\text { methanol })} / m($ methanol $)=\left[(0.002 / 0.926)^{2}+(0.5 / 21.6)^{2}\right]^{0.5}$
$S_{m(\text { methanol })} / m($ methanol $)=(0.000541)^{0.5}=0.0232$
$S_{m(\text { methanol })}=0.0232(0.200 \mathrm{~g})=0.005 \mathrm{~g}$
2. A test sample is analyzed for testosterone using a new method. The measured value is 38.11 $\pm 0.02 \mathrm{mg} / \mathrm{L}$ (second number is standard deviation) while the true value is $27.1 \mathrm{mg} / \mathrm{L}$. It is desired to have \% errors under 5\% and \% relative standard deviations under 2\%. We can conclude that the measurement is:
a) precise and accurate
b) precise but not accurate
c) accurate but not precise
d) neither precise nor accurate
(3 pts)
$\% R S D=0.05 \% \quad \%$ error $=41 \%$
