CHEMISTRY 31 Quiz 4 - **SOLUTIONS** Spring, 2017

1. In a precipitation titration, Ba^{2+} is added out of a buret to a flask containing SO_4^{2-} forming solid barium sulfate. The concentration of initial ions and volumes is known. In order to determine $[Ba^{2+}]$ at a point before the equivalence point where the volume of Ba^{2+} added is measured, you want to first calculate: a) the initial $[Ba^{2+}]$ in the buret

b) the excess $[Ba^{2+}]$ in the flask

c) the mass of solid BaSO₄ in the flask

d) the excess $[SO_4^{2-}]$ in the flask

Before the equivalence point, there will be excess sulfate in the flask and will greatly exceed any Ba. Thus we need to calculate excess $[SO_4^{2^-}]$ in the flask to be able to calculate Ba^{2^+} in equilibrium with the $[SO_4^{2^-}]$ (4 pts)

2. A compound is known to have a molar absorbtivity of 731 M^{-1} cm⁻¹ at a wavelength of 382 nm in water (solvent). A cell with path length of 0.200 cm is filled with the compound and the absorbance is measured to be 0.103. Determine the concentration of the compound. (6 pts)

 $A = \varepsilon bC \text{ or } C = A/\varepsilon b = 0.103/(731 \text{ } M^{-1} \text{ cm}^{-1})(0.200 \text{ cm}) = 7.05 \text{ } x \text{ } 10^{-4} \text{ } M$