1(a) Prove the set of all real numbers of the form \(m + n\sqrt{2} \), with \(m, n \in \mathbb{Z} \) is a subring of the real numbers.

Proof. Let \(S = \{ m + n\sqrt{2} | m, n \in \mathbb{Z} \} \). We want to prove that \(S \) is a subring of \(\mathbb{R} \).

Since \(\sqrt{2} \in S \), \(S \neq \emptyset \).

Let \(a + b\sqrt{2}, c + d\sqrt{2} \in S \). Then we have the following.

\[
(a + b\sqrt{2}) - (c + d\sqrt{2}) = (a - c) + (b - d)\sqrt{2} \in S
\]

\[
(a + b\sqrt{2})(c + d\sqrt{2}) = ac + 2bd + (ad + bc)\sqrt{2} \in S
\]

Thus, by the subring test, \(S \) is a subring of \(\mathbb{R} \).

16. Suppose that \(G \) is an abelian group with respect to addition, with identity element 0. Define a multiplication in \(G \) by \(ab = 0 \) for all \(a, b \in G \). Show that \(G \) forms a ring with respect to these operations.

Proof. Assume \(G \) is an abelian group and that \(ab = 0 \) for all \(a, b \in G \). Since \(ab = 0 \in G \), \(G \) is closed with respect to multiplication. Therefore we need only check the associative and distributive properties.

Let \(a, b, c \in G \). Then \(a(bc) = a0 = 0 \) and \((ab)c = 0c = 0 \). Thus \(a(bc) = (ab)c \), so multiplication is associative.

Also \(a(b + c) = 0 \) since any product is 0. Also \(ab + ac = 0 + 0 = 0 \). Thus \(a(b + c) = ab + ac \), so the left distributive property holds. We can prove similarly the right distributive property holds. Thus \(G \) is a ring.

23. Prove that if \(a \) is a unit in a ring \(R \) with unity, then \(a \) is not a zero divisor in \(R \).

Proof. Let \(a \in R \) be a unit. Let \(b \in R \) such that \(ab = 0 \). Then we have the following.

\[
ab = 0
\]
\[
a^{-1}ab = a^{-1}(0)
\]
\[
b = 0
\]

Since \(b \) must be zero, \(a \) is not a zero divisor.

27. For a fixed element \(a \) of a ring \(R \), prove that the set \(\{ x \in R | ax = 0 \} \) is a subring of \(R \).

Proof. Let \(S = \{ x \in R | ax = 0 \} \). Since \(a(0) = 0, 0 \in S \). Thus \(S \neq \emptyset \).

Let \(x, y \in S \). Then \(a(x - y) = ax - ay = 0 - 0 = 0 \). Thus \(x - y \in S \).

Also \(a(xy) = (ax)y = 0(y) = 0 \), so \(xy \in S \).

Therefore \(S \) is a subring of \(R \).

28. For a fixed element \(a \) of a ring \(R \), prove that the set \(\{ xa | x \in R \} \) is a subring of \(R \).
50. Suppose \(R = \{xa|x \in R\} \). Since \(0 = 0a \), then \(0 \in S \). Therefore \(S \neq \emptyset \).

Let \(r, s \in S \). Then \(r = xa \) and \(s = ya \) for some \(x, y \in R \). Then \(r - s = xa - ya = (x - y)a \). Thus \(r - s \in S \).

Also, \(rs = xaya = (xay)a \). Thus \(rs \in S \).

Therefore \(S \) is a subring of \(R \).

37. Show that the set of all idempotent elements of a commutative ring is closed under multiplication.

\begin{proof}
Let \(S = \{a \in R|a^2 = a\} \). Let \(x, y \in S \). So \(x^2 = x \) and \(y^2 = y \). Recall that \(R \) is a commutative ring, so we have the following.

\[
(xy)^2 = xyy = x^2y^2 = xy
\]

Thus \(xy \in S \).
\end{proof}

46. An element \(a \) of a ring \(R \) is called nilpotent if \(a^n = 0 \) for some positive integer \(n \). Prove that the set of nilpotent elements in a commutative ring \(R \) forms a subring of \(R \).

\begin{proof}
Let \(S = \{a \in R|a^n = 0 \text{ for some } n \in \mathbb{N}\} \).

Since \(0^1 = 0 \), \(0 \in S \). Thus \(S \neq \emptyset \).

Let \(a, b \in S \). Thus \(a^n = 0 \) and \(b^m = 0 \) for some \(n, m \in \mathbb{N} \). WLOG, \(n \geq m \). Therefore \((ab)^n = a^n b^n \) since \(R \) is commutative. Thus we have \((ab)^n = a^n b^n = 0(b^n) = 0 \). Hence \(ab \in S \).

Let \(r \in \mathbb{Z} \) such that \(r \geq n \), then \(a^{r-n} \in R \) and \(a^r = a^n a^{r-n} = 0(a^{r-n}) = 0 \). Similarly, let \(s \in \mathbb{Z} \) such that \(s \geq m \), then \(b^{m-s} \in R \) and \(b^s = b^m b^{s-m} = 0(b^{s-m}) = 0 \). Therefore we have the following.

\[
(a - b)^{n+m} = a^{n+m} + c_1 a^{n+m-1}b + c_2 a^{n+m-2}b^2 + \cdots + c_{m-1} a^{n+1}b^{m-1} + c_m a^n b^m + c_{m+1}a^{n-1}b^{m+1} + \cdots + c_{n+m-1}ab^{n+m-1} + b^{n+m}
\]

\[
= 0 + c_1(0)(b) + c_2(0)(b^2) + \cdots + c_{m-1}(0)b^{m-1} + c_m(0)(0) + c_{m-1}a^{n-1}(0) + \cdots + c_{n+m-1}(0) + 0
\]

\[
= 0
\]

Thus \((a - b)^{n+m} = 0 \) and hence \(a - b \in S \).

Therefore \(S \) is a subring of \(R \).
\end{proof}

50. Suppose \(R \) is a ring in which all elements \(x \) satisfy \(x^2 = x \). (Such a ring is called a Boolean ring.)

(a) Prove that \(x = -x \) for each \(x \in R \).

\begin{proof}
Let \(x \in R \). Then we have the following.

\[
(x + x)^2 = x + x
\]

\[
x^2 + x^2 + x^2 + x^2 = x^2 + x^2
\]

\[
x^2 + x^2 = 0
\]

\[
x + x = 0
\]

\[
x = -x
\]
\end{proof}
(b) Prove that R is commutative.

Proof. Let $x, y \in R$. Then we have the following.

\[
\begin{align*}
(x + y)^2 &= x + y \\
x^2 + xy + yx + y^2 &= x + y \\
x^2 + xy + yx + y^2 &= x^2 + y^2 \\
xy + yx &= 0 \\
xy &= -yx \\
xy &= yx \quad \text{(by part a)}
\end{align*}
\]