5. Suppose that \(\theta \) is an epimorphism from \(R \) to \(R' \) and that \(R \) has a unity. Prove that if \(a^{-1} \) exists for \(a \in R \), then \([\theta(a)]^{-1}\) exists and \([\theta(a)]^{-1} = \theta(a^{-1})\).

Proof. Let \(a \in R \) such that \(a^{-1} \) exists. Then we have the following.

\[
\theta(a)\theta(a^{-1}) = \theta(aa^{-1}) = \theta(e)
\]

Similarly \(\theta(a^{-1})\theta(a) = \theta(e) \). (Note that by problem 2, \(\theta(e) \) is the unity in \(R' \).) Thus \(\theta(a^{-1}) \) is the multiplicative inverse of \(\theta(a) \). In other words, \(\left(\theta(a) \right)^{-1} = \theta(a^{-1}) \).

6(b) Let \(S = \left\{ \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \mid x, y, z \in \mathbb{Z} \right\} \). Define \(\theta : S \to \mathbb{Z} \) by \(\theta \left(\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \right) = z \). Describe \(\text{ker} \theta \) and prove \(S/\text{ker} \theta \) is isomorphic to \(\mathbb{Z} \).

Proof.

\[
\text{ker} \theta = \left\{ \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \mid \theta \left(\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \right) = 0 \right\}
\]

\[
= \left\{ \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \mid z = 0 \right\}
\]

Thus the kernel is the set all matrices in \(S \) where the bottom right entry is 0.

Let \(K \) be the kernel of \(\theta \). Define \(\phi : S/K \to \mathbb{Z} \) by \(\phi \left(\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} + K \right) = z \).

Let’s check well-defined. So suppose \(\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} + K = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} + K \). So \(\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} - \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \in K \).

In other words, \(\begin{pmatrix} x-a & y-b \\ 0 & z-c \end{pmatrix} \in K \). Thus \(z-c = 0 \), so \(z = c \). Therefore we have

\[
\phi \left(\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \right) = z = c = \phi \left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right).
\]

Thus \(\phi \) is well-defined.

I will leave one-to-one, onto, homomorphism to you.

12. Let \(S = \{ m + n\sqrt{2} | m, n \in \mathbb{Z} \} \). Prove that \(\theta : S \to S \) defined by \(\theta(m + n\sqrt{2}) = m - n\sqrt{2} \) is an isomorphism.

Proof. Let \(a + b\sqrt{2}, c + d\sqrt{2} \in S \).

\[
\theta(a + b\sqrt{2} + c + d\sqrt{2}) = \theta(a + c + (b + d)\sqrt{2})
\]

\[
= a + c - (b + d)\sqrt{2}
\]

\[
= a - b\sqrt{2} + c - d\sqrt{2}
\]

\[
= \theta(a + b\sqrt{2}) + \theta(c + d\sqrt{2})
\]
\[\theta((a + b\sqrt{2})(c + d\sqrt{2})) = \theta(ac + 2bd + (ad + bc)\sqrt{2}) = ac + 2bd - (ad + bc)\sqrt{2} = (a - b\sqrt{2})(c - d\sqrt{2}) = \theta(a + b\sqrt{2})\theta(c + d\sqrt{2}) \]

Thus \(\theta \) is a homomorphism.

Let \(x + y\sqrt{2} \in S \). Then \(\theta(x - y\sqrt{2}) = \theta(x + (-y)\sqrt{2}) = x - (-y)\sqrt{2} = x + y\sqrt{2} \). Thus \(\theta \) is onto.

Suppose \(\theta(r + s\sqrt{2}) = \theta(w + z\sqrt{2}) \) for some \(r, s, w, z \in \mathbb{Z} \). Then \(r - w = (s - z)\sqrt{2} \). If \(s - z \neq 0 \), then \((s - z)\sqrt{2} \) is irrational, which is a contradiction. Thus \(s - z \) must be 0. So \(s = z \) and so \(r = z \). Therefore \(\theta \) is one-to-one.

Hence \(\theta \) is an isomorphism.

Proof.

Let \(\mathbb{R} = \left\{ \begin{bmatrix} m & 2n \\ n & m \end{bmatrix} \mid m, n \in \mathbb{Z} \right\} \) and \(\mathbb{R}' = \{ m + n\sqrt{2} \mid m, n \in \mathbb{Z} \} \). Prove that \(\mathbb{R} \) and \(\mathbb{R}' \) are isomorphic.

Proof. Define \(\theta : \mathbb{R} \to \mathbb{R}' \) by \(\theta \left(\begin{bmatrix} m & 2n \\ n & m \end{bmatrix} \right) = m + n\sqrt{2} \).

I’ll leave it to you to show that \(\theta \) is an isomorphism.

18(b) Suppose \(\theta : \mathbb{R} \to \mathbb{R}' \) is a homomorphism. Prove that if \(x \in \mathbb{R} \) is nilpotent, then \(\theta(x) \) is nilpotent in \(\mathbb{R}' \).

Proof. Let \(x \in \mathbb{R} \) be nilpotent. Then \(x^n = 0 \) for some \(n \in \mathbb{N} \). Then we have the following:

\[\theta(x)^n = \theta(x^n) = \theta(0) = 0 \]

Thus \(\theta(x) \) is nilpotent.

25. Assume that \(\theta \) is an epimorphism from \(\mathbb{R} \) to \(\mathbb{R}' \). Prove the following.

(a) If \(I \) is an ideal of \(\mathbb{R} \), then \(\theta(I) \) is an ideal of \(\mathbb{R}' \).

(b) If \(I' \) is an ideal of \(\mathbb{R}' \), then \(\theta^{-1}(I') \) is an ideal of \(\mathbb{R} \).

Proof. Let \(\theta : \mathbb{R} \to \mathbb{R}' \) be an epimorphism and let \(I \) be an ideal in \(\mathbb{R} \) and \(I' \) be an ideal in \(\mathbb{R}' \).

(a) Since \(0 \in I, \theta(0) \in \theta(I) \). Thus \(\theta(I) \neq \emptyset \).

Let \(a', b' \in \theta(I) \). Since \(\theta \) is onto, there exists \(a, b \in \mathbb{R} \) such that \(\theta(a) = a' \) and \(\theta(b) = b' \). Then we have the following.

\[a' - b' = \theta(a) - \theta(b) = \theta(a - b) \in \theta(I) \]

Let \(r' \in \mathbb{R}' \). Since \(\theta \) is onto there exists \(r \in \mathbb{R} \) such that \(\theta(r) = r' \). Then \(r'a' = \theta(r)\theta(a) = \theta(ra) \in \theta(I) \). Similarly \(a'r' \in \theta(I) \).

Thus \(\theta(I) \) is an ideal in \(\mathbb{R}' \).

(b) Since \(\theta(0_R) = 0_{R'}, \theta_0 \in \theta^{-1}(I') \). Thus \(\theta^{-1}(I') \neq \emptyset \).

Let \(a, b \in \theta^{-1}(I') \). So \(\theta(a), \theta(b) \in I' \), thus \(\theta(a - b) = \theta(a) - \theta(b) \in I' \). Therefore \(a - b \in \theta^{-1}(I') \).

Let \(r \in \mathbb{R} \). Then \(\theta(ra) = \theta(r)\theta(a) \in I' \) since \(\theta(a) \in I' \). Therefore \(ra \in \theta^{-1}(I') \).

Thus \(\theta^{-1}(I') \) is an ideal in \(\mathbb{R} \).