5. Let F be a field and $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in F[x]$.

(a) Prove that $x - 1$ is a factor of $f(x)$ if and only if $a_0 + a_1 + \cdots + a_n = 0$.

Proof. Let $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in F[x]$.

$x - 1$ is a factor of $f(x)$ \iff $f(1) = 0$

$\iff a_0 + a_1(1) + \cdots + a_n(1)^n = 0$

$\iff a_0 + a_1 + \cdots + a_n = 0$

\[\blacksquare \]

(b) Prove that $x + 1$ is a factor of $f(x)$ if and only if $a_0 - a_1 + \cdots + (-1)^n a_n = 0$.

Proof. Let $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in F[x]$.

$x + 1$ is a factor of $f(x)$ \iff $f(-1) = 0$

$\iff a_0 + a_1(-1) + \cdots + a_n(-1)^n = 0$

$\iff a_0 - a_1 + \cdots + (-1)^n a_n = 0$

\[\blacksquare \]

9. Let F be a field. Prove that if c is a zero of $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in F[x]$, then c^{-1} is a zero of $a_n + a_{n-1} x + \cdots + a_0 x^n$.

Proof. (Note: In order for c^{-1} to exist $c \neq 0$.) Assume $c \in F$ is a zero of $f(x) = a_0 + a_1 x + \cdots + a_n x^n \in F[x]$. So $f(c) = 0$. Thus we have the following.

$a_0 + a_1 c + \cdots + a_n c^n = 0$

$(c^{-1})^n (a_0 + a_1 c + \cdots + a_n c^n) = 0$

$a_0 (c^{-1})^n + a_1 (c^{-1})^{n-1} + \cdots + a_n = 0$

Thus c^{-1} is a zero of $a_0 x^n + a_1 x^{n-1} + \cdots + a_n$.

\[\blacksquare \]

10. Let $f(x)$ and $g(x)$ be two polynomials over the field F, both of degree n or less. Prove that if $m > n$ and if there exists m distinct elements c_1, c_2, \ldots, c_m of F such that $f(c_i) = g(c_i)$ for $i = 1, 2, \ldots, m$, then $f(x) = g(x)$.

Proof. Let $\deg f(x), \deg g(x) \leq n$. Let $h(x) = f(x) - g(x)$. Suppose $h(x) \neq 0$, then $\deg h(x) \leq n$. Let $m > n$ and let c_1, c_2, \ldots, c_m be elements in F such that $f(c_i) = g(c_i)$. Thus $h(c_i) = 0$. In other words, c_1, \ldots, c_m are zeros of h. Hence $h(x)$ has m zeros. However $m > \deg h(x)$, which contradicts corollary 8.18. Thus $h(x)$ must equal 0 and hence $f(x) = g(x)$.

\[\blacksquare \]

16. Let $f(x)$ be a polynomial of positive degree n over the field F, and assume that $f(x) = (x - c)q(x)$ for some $c \in F$ and $q(x)$ in $F[x]$.

(a) Prove that c and the zeros of $q(x)$ in F are zeros of $f(x)$.

Proof. Clearly c is a zero of $f(x)$ by the Factor Theorem.

Let a be a zero of $q(x)$. Then $f(a) = (a - c)(q(a)) = (a - c)(0) = 0$. Thus a is a zero of f.

\[\blacksquare \]
(b) Prove that \(f(x) \) has no other zeros in \(F \).

Proof. Let \(a \) be a zero of \(f(x) \). Then \(0 = f(a) = (a - c)q(a) \). Since \(F \) is an integral domain, \(a - c = 0 \) or \(q(a) = 0 \). Thus \(a = c \) or \(a \) is a zero of \(q(x) \). \(\square \)

17. Suppose that \(f(x), g(x) \) and \(h(x) \) are polynomials over the field \(F \), each of which has positive degree, and that \(f(x) = g(x)h(x) \). Prove that the zeros of \(f(x) \) in \(F \) consist of the zeros of \(g(x) \) in \(F \) together with the zeros of \(h(x) \) in \(F \).

Proof. Let \(a \) be a zero of \(f \). Then \(0 = f(a) = g(a)h(a) \). Since \(F \) is an integral domain, \(g(a) = 0 \) or \(h(a) = 0 \). Thus \(a \) is a zero of \(g \) or \(a \) is a zero of \(h \).

Let \(a \) be a zero of \(g \). Then \(f(a) = g(a)h(a) = 0 \). Thus \(a \) is a zero of \(f \). Similarly if \(a \) is a zero of \(h \), then \(a \) is a zero of \(f \). \(\square \)

22. Let \(a \neq b \) in a field \(F \). Show that \(x + a \) and \(x + b \) are relatively prime in \(F[x] \).

Proof. Let \(a \neq b \in F \). Then \((a - b)^{-1}(x + a) - (a - b)^{-1}(x + b) = 1 \). Therefore we have written 1 as a linear combination of \(x + a \) and \(x + b \). Thus the GCD of \(x + a \) and \(x + b \) is 1. \(\square \)

23. Let \(f(x), g(x), h(x) \in F[x] \) where \(f(x) \) and \(g(x) \) are relatively prime. If \(h(x) \mid f(x) \), prove that \(h(x) \) and \(g(x) \) are relatively prime.

Proof. Let \(f(x), g(x), h(x) \in F[x] \) where \(f(x) \) and \(g(x) \) are relatively prime. Assume \(h(x) \mid f(x) \). Thus there exists \(k(x) \in F[x] \) such that \(f(x) = h(x)k(x) \). Moreover, since \(f(x) \) and \(g(x) \) are relatively prime there exist \(m(x), n(x) \in F[x] \) such that \(1 = f(x)m(x) + g(x)n(x) \). Therefore \(1 = h(x)k(x)m(x) + g(x)n(x) \). So we have written 1 as a linear combination of \(h(x) \) and \(g(x) \). Therefore the GCD of \(h(x) \) and \(g(x) \) is 1. \(\square \)