1. Find all elements of \(\mathbb{Z}_3[x]/(p(x)) \) and construct addition and multiplication tables.

 (a) \(p(x) = x^2 + x + 2 \)
 (b) \(p(x) = x^2 + 1 \)

8. If \(F \) is a finite field with \(k \) elements, and \(p(x) \) is a polynomial of positive degree \(n \) over \(F \), find a formula for the number of elements in the ring \(F[x]/(p(x)) \).

 An arbitrary element in \(F[x]/(p(x)) \) looks like \(a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} + (p(x)) \) where \(a_i \in F \).

 So we have \(k \) choices for each \(a_i \). Thus we have a total of \(k^n \) possible combinations.

 \[
 |F[x]/(p(x))| = k^n
 \]

9. Construct a field having the following number of elements.

 (a) \(2^4 \)

 We want to work over \(\mathbb{Z}_2 \) and find an irreducible polynomial of degree 4.

 Let \(f(x) = x^4 + x + 1 \). If \(f(x) \) is irreducible over \(\mathbb{Z}_2 \), then \(\mathbb{Z}_2[x]/(f(x)) \) is a field with \(2^4 \) elements.

 I’ll leave the proof that \(f(x) \) is irreducible to you.

 (b) \(5^2 \)

 Find an irreducible polynomial over \(\mathbb{Z}_5 \) of degree 2. Then \(\mathbb{Z}_5[x]/(f(x)) \) is a field with \(5^2 \) elements.

 (c) \(3^3 \)

 Find an irreducible polynomial over \(\mathbb{Z}_3 \) of degree 3. Then \(\mathbb{Z}_3[x]/(f(x)) \) is a field with \(3^3 \) elements.

 (d) \(7^2 \)

 Find an irreducible polynomial over \(\mathbb{Z}_7 \) of degree 2. Then \(\mathbb{Z}_7[x]/(f(x)) \) is a field with \(7^2 \) elements.