1. Let \(p(x) = x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x] \), and let \(\eta \) be a root of \(p(x) \). Prove that the splitting field for \(p(x) \) is \(\mathbb{Q}(\eta) \).

2. Let \(E \) be a field extension of \(F \).
 (a) Prove that \(\text{Gal}(E/F) \) is a subgroup of \(\text{Aut}(E) \).
 (b) Prove that if \(E \) is an extension of \(\mathbb{Q} \), then \(\text{Gal}(E/\mathbb{Q}) = \text{Aut}(E) \).
 (In other words, any automorphism of \(E \) will fix \(\mathbb{Q} \).
 (c) Prove that if \(E \) is an extension of \(\mathbb{F}_p \), then \(\text{Gal}(E/\mathbb{F}_p) = \text{Aut}(E) \).
 (In other words, any automorphism of \(E \) will fix \(\mathbb{F}_p \).

3. Determine \(\text{Gal} \left(\mathbb{Q}(\sqrt{2})/\mathbb{Q}(\sqrt{2}) \right) \).

4. Let \(\sigma_p : \mathbb{F}_p^n \to \mathbb{F}_p^n \) be given by \(\sigma_p(a) = a^p \). This map is called the Frobenius map.
 (a) Prove \(\sigma_p \in \text{Aut}(\mathbb{F}_p^n) \).
 (b) Determine the order of \(\sigma_p \) in \(\text{Aut}(\mathbb{F}_p^n) \).