Section 3.4+ Homework

2. Prove Corollary 3.34.

3. Let R be a commutative ring with unity and let $a, b \in R$. Prove $(a, b) = \{ar + bs | r, s \in R\}$.

4. Prove that every field is a PID.

5. Let R be an integral domain. Prove that for any $a, b \in R$, the following are equivalent.

 (a) a and b are associates
 (b) $a|b$ and $b|a$
 (c) $(a) = (b)$

6. (a) Let R be an integral domain and $p \in R$. Prove that if p is a prime element, then p is irreducible.

 (b) Let R be a PID and $p \in R$. Prove that if p is irreducible, then p is a prime element.

7. Let R be a commutative ring with unity. Let $a, b \in R$ and let d be a GCD of a and b. Prove that ud is also a GCD of a and b for every $u \in U(R)$.

8. Let R be a PID and $a, b \in R$. Prove $(a, b) = (d)$ where d is a GCD of a and b.