1. Short Answer and Examples...

2. Set up (but do not evaluate) the integral to compute the length of the curve given by \(y^2 = 4x \) for \(0 \leq y \leq 2 \).

3. Set up (but do not evaluate) the integral to compute the surface area of the surface obtained by rotating the given curve about the given axis.

 (a) \(y = \sqrt{x} \) for \(4 \leq x \leq 9 \) about \(x \)-axis

 (b) \(y = x^3 + x \) for \(1 \leq x \leq 3 \) about \(y \)-axis

4. Compute the following integrals. If the integral diverges, prove it.

 (a) \(\int_{2}^{3} \frac{x^2 + 2x - 1}{x^3 - x} \, dx \)

 (b) \(\int_{1}^{3} \frac{1}{x - 2} \, dx \)

5. Consider the sequence \(\left\{ 2, \frac{3}{2}, \frac{9}{8}, \frac{27}{32}, \ldots \right\} \).

 (a) Give an explicit definition of the sequence.

 (b) Give a recursive definition of the sequence.

6. Find the sum of the series \(\sum_{n=1}^{\infty} \frac{(-2)^n}{4 \cdot 3^{n+1}} \).

7. Determine whether the following series converge or diverge. Justify your answer.

 (a) \(\sum_{n=1}^{\infty} \frac{3^{2n}}{4^{n-1}} \)

 (b) \(\sum_{n=1}^{\infty} \frac{n}{2n + 1} \)

 (c) \(\sum_{n=1}^{\infty} \frac{\ln n}{n^2} \)