1. Short Answer and/or Examples...

2. Set up \textbf{(but do not evaluate)} the integral to find the following.

 (a) The volume of the solid obtained by rotating the region bounded by \(y = x \) and \(y = \sqrt{x} \) about the line \(x = -1 \).

 \[
 V = \int_{0}^{1} 2\pi(1 + x)(\sqrt{x} - x) \, dx
 \]

 or

 \[
 V = \int_{0}^{1} \pi[(1 + y)^2 - (1 + y^2)^2] \, dy
 \]

 (b) Find the area of the surface obtained by rotating the curve given by \(x = 1 + 2y^2 \) for \(1 \leq y \leq 2 \) about the \(x \)-axis.

 \[
 SA = \int_{1}^{2} 2\pi y\sqrt{1 + (4y)^2} \, dy
 \]

3. The graphs of \(y = x^3 - x \) and \(y = 3x \) are shown below. Find the area of the shaded region.

 \[A = 8 \]

4. Compute the following integrals.

 (a) \[
 \int_{1}^{2} \frac{\ln x}{x^2} \, dx = \frac{1 - \ln 2}{2}
 \]

 (b) \[
 \int \frac{\sqrt{9 - x^2}}{x} \, dx = 3 \ln \left| \frac{3 - \sqrt{9 - x^2}}{x} \right| + \sqrt{9 - x^2} + C
 \]

 (c) \[
 \int_{0}^{\frac{\pi}{2}} \sec^4 x \tan^3 x \, dx = \frac{5}{12}
 \]

 (d) \[
 \int \frac{x + 6}{x^2 + 3x} \, dx = 2 \ln |x| - \ln |x + 3| + C
 \]

 (e) \[
 \int \sin \sqrt{x} \, dx = 2 \sin \sqrt{x} - 2\sqrt{x} \cos \sqrt{x} + C
 \]

5. Find the length of the curve \(x = 1 + 3t^2, \ y = 4 + 2t^3 \) for \(0 \leq t \leq 1 \).

 \[l = 4\sqrt{2} - 2 \]

6. Find the equation of the tangent line to the curve given by \(x = e^t, \ y = (t - 1)^2 \) at the point \((1, 1)\).

 \[y = -2x + 3 \]

7. Give two different sets of polar coordinates for the point with Cartesian coordinates \((1, -\sqrt{3})\).

 There are lots of possibilities here. I’ll give three: \((2, -\frac{\pi}{3}), \ (-2, \frac{2\pi}{3}), \ (2, \frac{5\pi}{3})\)
8. Give Cartesian coordinates for the point with polar coordinates \(\left(2, \frac{5\pi}{6} \right) \).

\((-\sqrt{3}, 1)\)

9. Determine whether the following series converge or diverge. If it converges, find the sum.

(a) \(\sum_{n=1}^{\infty} \frac{2n}{3n+5} \) Diverge

(b) \(\sum_{n=1}^{\infty} \frac{(-3)^n}{2^{3n}} \) Converge, \(s = -\frac{3}{11} \)

(c) \(\sum_{n=2}^{\infty} \frac{1}{n \ln n} \) Diverge

10. Determine whether the series \(\sum_{n=1}^{\infty} \frac{(-1)^n(3n+5)}{4n^2 - n + 1} \) is absolutely convergent, conditionally convergent or divergent.

11. Find the interval of convergence for \(\sum_{n=1}^{\infty} \frac{(-1)^nx^n}{3^{2n}n} \).

\((-9, 9]\)

12. Express the following functions as power series.

(a) \(f(x) = \frac{3}{1+x^4} = \sum_{n=0}^{\infty} (-1)^n 3x^{4n} \)

(b) \(f(x) = e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!} \)

(c) \(f(x) = \frac{\sin(x^3)}{x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{6n+2}}{(2n+1)!} \)

13. Find the Taylor series centered at 1 for the function \(f(x) = \frac{1}{\sqrt{x}} \)

\(\sum_{n=0}^{\infty} \frac{(-1)^n 1 \cdot 3 \cdot 5 \cdots (2n - 1)}{2^n n!} (x-1)^n \)

14. Use the power series representation (found in problem 12b) for \(f(x) = e^{-x^2} \) to compute \(\int_0^{.5} e^{-x^2} \, dx \) correct to within .001.

\(\int_0^{.5} e^{-x^2} \, dx \approx .461 \)