Gherman Group Meeting

Density Functional Theory and Partial Charges

July 16, 2009

Outline

- Density Functional Theory
 - Exchange-Correlation Functionals
 - Comparison to MO (e.g., HF) theory
 - Performance

Part 1: Density Functional Theory

DFT: Background (1)

Hohenberg-Kohn Existence Theorem

- ground-state density ρ distribution of electrons in the molecule
- external potential charges and position of the nuclei (i.e., the molecular geometry)
- theorem: the ground-state density determines the external potential
- together these determine the Hamiltonian, the wave function, and the energy.

DFT: Background (2)

• Directly from ρ to E

$$E(\rho(r)) = T_{ni}[\rho(r)] + V_{ne}[\rho(r)] + V_{ee}[\rho(r)] + \Delta T[\rho(r)] + \Delta V_{ee}[\rho(r)]$$

- T_{ni} KE of non-interacting electrons
- V_{ne} nuclear-electron interaction potential energy
- V_{ee} classical electron-electron repulsion potential energy
- ΔT correction to KE from interacting nature of electrons
- ΔV_{ee} non-classical correction to the electron-electron repulsion energy (exchange and correlation effects)
- Typically combine ΔT and ΔV_{ee} to E_{xc}
- Main question: What is the functional form of E_{xc}?

- Local density approximation (LDA)
 - exchange-correlation value computed exclusively from the value of ρ at that position ("local" value of ρ)
 - e.g., LDA, Slater, X α for the exchange portion
 - e.g., VWN, VWN5 for the correlation portion

- Local density approximation (LDA)
 - exchange-correlation value computed exclusively from the value of ρ at that position ("local" value of ρ)
 - e.g., LDA, Slater, $X\alpha$ for the exchange portion
 - e.g., VWN, VWN5 for the correlation portion
 - based upon the uniform electron gas
 - infinite # of electrons in an infinite volume in the presence of uniformly distributed positive charge
 - E_{xc} at a position in the molecule is the same as it would be for the uniform electron gas having the same density as at that molecular position.

- Generalized gradient approximation (GGA)
 - E_{xc} depends on local value of ρ AND the gradient of ρ ("gradient correction")
 - constructed as the LDA E_{xc} plus a GGA correction term
 - e.g., B, O, PW, mPW, X for the exchange portion
 - e.g., PW91, LYP for the correlation portion
 - completely specify a functional --- e.g., BLYP

- Generalized gradient approximation (GGA)
 - E_{xc} depends on local value of ρ AND the gradient of ρ ("gradient correction")
 - constructed as the LDA E_{xc} plus a GGA correction term
 - e.g., B, O, PW, mPW, X for the exchange portion
 - e.g., PW91, LYP for the correlation portion
 - completely specify a functional --- e.g., BLYP
- Meta-GGA
 - include also dependence on kinetic energy density $\sum_{i=1}^{occupied} \frac{1}{2} |\nabla \psi_i(r)|^2$

• e.g., B98, TPSS

- Hybrid Functionals
 - $E_{xc} = (1-a)E_{xc}^{DFT} aE_{x}^{HF}$
 - include a combination of exchange computed from a DFT functional and from HF formalism
 - e.g., B3LYP

• Hybrid Functionals

- $E_{xc} = (1-a)E_{xc}^{DFT} aE_{x}^{HF}$
 - include a combination of exchange computed from a DFT functional and from HF formalism
 - e.g., B3LYP
 - $E_{xc}^{B3LYP} = DFT part + HF_{x} part$

• Hybrid Functionals

- $E_{xc} = (1-a)E_{xc}^{DFT} aE_{x}^{HF}$
 - include a combination of exchange computed from a DFT functional and from HF formalism
 - e.g., B3LYP

•
$$E_{xc}^{B3LYP} = DFT part + HF_{x} part$$

= LDA + GGA + HF_x part

• Hybrid Functionals

- $E_{xc} = (1-a)E_{xc}^{DFT} aE_{x}^{HF}$
 - include a combination of exchange computed from a DFT functional and from HF formalism
 - e.g., B3LYP

•
$$E_{xc}^{B3LYP} = DFT part + HF_{x} part$$

= LDA + GGA + HF_x part

• Hybrid Functionals

- $E_{xc} = (1-a)E_{xc}^{DFT} aE_{x}^{HF}$
 - include a combination of exchange computed from a DFT functional and from HF formalism
 - e.g., B3LYP

•
$$E_{xc}^{B3LYP} = DFT part + HF_{x} part$$

- = LDA + GGA + HF_x part
- = $LDA_c + LDA_x + GGA_c + GGA_x + HF_x$ part
- = $(1-a)E_x^{LSDA} + aE_x^{HF} + b\Delta E_x^{B} + (1-c)E_c^{LSDA} + cE_c^{LYP}$

a, b, c empirical parameters

• Hybrid Functionals

- $E_{xc} = (1-a)E_{xc}^{DFT} aE_{x}^{HF}$
 - include a combination of exchange computed from a DFT functional and from HF formalism
 - e.g., B3LYP

•
$$E_{xc}^{B3LYP} = DFT part + HF_{x} part$$

- = LDA + GGA + HF_x part
- = $LDA_c + LDA_x + GGA_c + GGA_x + HF_x$ part
- = $(1-a)E_x^{LSDA} + aE_x^{HF} + b\Delta E_x^{B} + (1-c)E_c^{LSDA} + cE_c^{LYP}$
- a, b, c empirical parameters
- e.g., one-parameter methods which only adjust amount of HF exchange
 - mPW1PW91, PBE1PBE
- e.g., combining mGGA functionals with HF exchange
 - TPSSh

DFT: General Observations

- Exchange and correlation functionals can take on complicated forms and may be difficult to relate to first principles.
- DFT can be viewed as "semi-empirical" in that there are empirically optimized constants and functional forms.
- Improvement from LSDA to GGA to mGGA functionals.
- Best hybrid functionals are as good as best mGGA functionals.

DFT: Shortcomings

- Long-range electron correlation
 - since correlation energy depends on local ρ and gradient
 - leads to failure to model dispersion forces
 - van der Waals complexes, such as noble-gas dimers

DFT: Performance

• For the average problem, DFT is method of choice to achieve a particular level of accuracy at lowest cost.

DFT: Performance

- For the average problem, DFT is method of choice to achieve a particular level of accuracy at lowest cost.
- Energies
 - for a given level of accuracy, hybrid and mGGA functionals are most efficient
 - hybrid and mGGA functionals usually improve over pure DFT functionals
 - GGA models are a major improvement over the LSDA model
 - Conclusions generally hold for reaction energetics, IEs, EAs, proton affinities.

DFT: Performance

- For the average problem, DFT is method of choice to achieve a particular level of accuracy at lowest cost.
- Energies
 - for a given level of accuracy, hybrid and mGGA functionals are most efficient
 - hybrid and mGGA functionals usually improve over pure DFT functionals
 - GGA models are a major improvement over the LSDA model
 - Conclusions generally hold for reaction energetics, IEs, EAs, proton affinities.
 - In practice, different functionals work best in different systems and choice of functional must be calibrated to experimental data.

Part 2: Partial Charges

Partial Atomic Charges

• Four general classes of partial atomic charges

 Best use: analysis of *changes* in charges in a reaction, from substitution, with geometric change.

Class I

not determined from quantum mechanics

Class II

- partition the wave function into atomic contributions based upon orbitals
- Mulliken, Löwdin, NPA charges…

Partial Atomic Charges – Class II (1)

• Mulliken charges

- electrons are divided among atoms according to the weight with which basis functions contribute to the molecular wave function
 - electrons associated with a single basis function
 - assigned to the atom associated with the basis function
 - electrons shared between basis functions
 - divided evenly between the 2 atoms associated with the basis functions

potential problems

- sensitive to basis-set size
- does not account well for differing electronegativities of atoms

Partial Atomic Charges – Class II (2)

- Löwdin charges transform the basis functions before doing Mulliken population analysis
 - more stability with basis sets
- NPA (natural population analysis)
 - most stable with basis set size
 - tend to be larger in magnitude

Partial Atomic Charges – Class III

- Class III charges reproduce a physical observable that can be calculated from the wave function.
- Example: electrostatic potential (ESP) fit charges
 - partial atomic charges which minimize difference between...
 - the molecular electrostatic potential (from the wave function)
 - the electrostatic potential from the partial atomic charges:

- advantages
 - intermolecular interactions
- disadvantages
 - ill-conditioned for atoms not near the surface (big variations have little effect on ESP)
 - intramolecular interactions

Partial Atomic Charges – Class IV

- Class IV: charges to chosen to reproduce an experimentally determined observable
 - start from class II partial atomic charges
 - modify to reproduce experimental observable (e.g. molecular dipole moment)