Coulomb screening and exciton binding energies in conjugated polymers
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Hartree—Fock solutions of the Pariser—Parr—Pople and MNDO Hamiltonians are shown to give
reasonable predictions for the ionization potentials and electron affinities of gas-phase polyenes.
However, the energy predicted for formation of a free electron-hole pair on an isolated chain of
polyacetylene is much larger than that seen in the solid state. The prediction is 6.2 eV if soliton
formation is ignored and about 4.7 eV if soliton formation is included. The effects of interchain
interactions on the exciton binding energy are then explored using a model system consisting of one
solute and one solvent polyene, that are coplanar and separated by 4 A. The lowering of the exciton
binding energy is calculated by comparing the solvation energy of the exciton state to that of a
single hole(a cationic solute polyenend a single electrofan anionic solute polyenelt is argued

that when the relative timescales of charge fluctuations on the solute and solvent chains are taken
into account, it is difficult to rationalize the electron—electron screening implicit in the
parametrization of a single-chain Hamiltonian to solid-state data. Instead, an electron—hole
screening model is developed that includes the time scales of both the electron—hole motion and the
solvent polarization. The predicted solvation energies, which are saturated with respect to solute and
solvent chain length, are 0.07 eV for the exciton and 0.50 eV for a well separated electron—hole pair.
Given this large, 0.43 eV reduction in the exciton binding energy due to interaction with a single
chain, it seems likely that interchain interactions play a central role in establishing the solid-state
exciton binding energy. €1997 American Institute of Physids$S0021-9607)50310-2

I. INTRODUCTION lomb screening from adjacent polymer chains. Our goal is to
develop explicit models for this screening process. Explicit
In light-emitting-diodes (LEDs) based on conjugated inclusion of screening will likely lead to better transferability
polymers, an electron and hole are injected into an undopegf parameters between different polymer systems. It should
conjugated polymer, such as pdiyara-phenylene vinylene also allow detailed information on molecules, either from
(PPV).2 These charges migrate through the material andxperiment or high-levedb initio calculations, to be used in
combine to emit a photon. An important quantity for devel-the parametrization of solid-state models. The use of molecu-
oping an understanding of this process is the exciton bindingar data is especially important when detailed solid-state ex-
energy, the difference in energy between a well-separategerimental data are difficult to obtain, such as when model-
electron—hole pair and the state that emits the photon. ling the effects of chemical defects and physical morphology.
polydiacetylene, both photoconductivityand electro- The effects of interchain interactions on the exciton
absorptioi® measurements find an exciton binding energybinding energy are studied using a model system consisting
of 0.5 eV. In polyacetylene, photoexcitation leads to theof one “solute” polyene and one “solvent” polyerfé:?®
rapid formation of both charged and neutral solitdrfsin  When the relative time scales of charge fluctuations on the
PPV, experimental estimates for the exciton binding energgolute and solvent chains are taken into account, it is difficult
include near 0.8,0.2 eV 0.4 evV!**2and 0.9 e\V2*'*and  to rationalize the electron—electron screening implicit in the
theoretical estimates include 0.4 gRef. 15, 16 and 0.9 parametrization of a single-chain Hamiltonian to solid-state
ev data. Instead, we adopt an electron—hole screening model
Here, we use semiempirical quantum chemistry to preand demonstrate that the relative time scales of electron—
dict the exciton binding energy of an isolated polymer chainhole motion and solvent polarization are such that a simple
and to explore the effects of interchain interactions on thiscreening of the electron—hole interaction is not valid.
binding energy. Many theoretical studies of conjugated poly-  Section Il describes the chemical system being studied
mers use a single-chain Hamiltonian with parameters fit tand defines the Hamiltonian. Section Il uses semiempirical
solid-state observatiort§:}’~?The resulting parameters are quantum chemistry to extrapolate the ionization potential and
typically quite different from those used in standard semi-electron affinity of polyené$ to the long chain limit, yield-
empirical quantum chemistry models such as PPP, ing a prediction for the energy required to create a free
ZINDO,?? or MNDO.Z In particular, to obtain agreement electron—hole pair on an isolated polyacetylene chain. Sec-
with solid-state exciton binding energies, the Coulomb repultion 1V develops models for the effects of interchain interac-
sion between electrons must be substantially weaker thations on the exciton binding energy, Sec. IV A introduces the
that present in standard chemical parametrizattén*  quantum chemical basis set used to describe the polarization
This need to weaken the electron—electron interactions in af the solvent chain, Sec. IV B discusses the time scales of
single-chain Hamiltonian may reflect the importance of Cou-importance to the screening process, Secs. IVC and IV D
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chains are co-planar and centered | Bi""’— ,BZOIV| = ESO'V/Z, (5)
1.35A 5 £ 1464 where ESV is the optical gap of the solverit..8 eV in all
solvent 3NN N N N studies except those of Fig. 1Huckel theory is used for the
120 - . ; e I .
: 4.0A solvent because it greatly simplifies the Hamiltonian matrix
NN NN i i
solute 2™\ - =N elements in the electronic—polaron model of Sec. I1\sEe

FIG. 1. Chemical structure of the system used to study the effects of inter'Ehe Appendn}, and because it should prowde a reasonable

chain interactions on the exciton binding energy. Both the solute and solverﬁiescr'iption .Of the ."near response Of th? SO!V_em chain. Un-
chain lengths are varied in the calculations. like dielectric continuum models, which implicitly assume a

solvent made up of point dipoles, kel theory captures the

delocalized electronic structure of the solventckiel theory
consider simple limiting cases for these time scales, and Sealso contains the correct time scale for the dielectric re-
IV E develops a general electron—hole screening model thajponse, an issue of importance in the electronic—polaron
includes the time scales of both electron—hole motion ananodel of Sec. IV E. This time scale is set by the optical gap
the dielectric response. The results of these models are corand the Hekel parameters are chosen to yield the experi-

pared and discussed in Sec. V. mentally observed optical gap, EG).
The solute and solvent interact through Coulomb inter-
actions,

Il. HAMILTONIAN

The solvation energy calculations are performed on a HSO'—SO'VZE u(r, )pipi (6)
model system consisting of two polyenes, one solute and one Li
solvent chain(Fig. 1). The Hamiltonian is, wherei is summed over solute atoms ahis summed over

H = H 0l SOV} sol-solv (1) solvent atoms.

The solute is described using Pariser—Parr—Pople ttéory,

1
sol soh ot ~ - llI. EXCITON BINDING ENERGY ON AN ISOLATED
z [=1ai J'i] Lomho =2 Z (pi=Dp POLYMER CHAIN

Lo

- A It is useful to separate the calculation of the exciton
+i2<j U(rpipi, 2) binding energy into two parts; the exciton binding energy of

" ) o a hypothetical isolated chain, and the effects of interchain
wherea; ,(a; ) creategdestroy$ an electron with spimrin  jnteractions on this binding energy. This section first calcu-

the p-orbital on theith carbon,p; i? the charge operator on |ates the exciton binding energy of a single polyacetylene

i g t i i . . . f ) .
theith carbonp; = 1 — &; ,8i,a — & 48 4, andr; jisthedis-  chain using the PPP Hamiltonian and S-@bnfiguration
tance between carbomsand . For the one electron terms, jnteraction with single electron—hole pair excitatipns

59, we use nearest-neighbor transfer integrals A3 theory?®-3017-19jnce this is the approach that is used to

, _ 1e : _ _ ed tc
= —2.228 eV for single bonds an@3’=—2.581 eV for  gescribe the solute in Sec. IV. We then consider semiempir-
double bonds. Both the electron—electron and nuclearica| models that include both sigma and pi electrons. These
nuclear repulsions are described with the Ohno potential, zjjow us to compare the theoretical predictions to experi-

14.397 eV A ments on carbon chains with both even and odd numbers of
U(r)= , (3y  carbon atoms, and to include the soliton formation energy.
14.397 eVA? In Sec. IV, the PPP Hamiltonian for the solute chain, Eq.
\/(TA> +r2 (2), is solved using S-ClI theory in a local orbital basis. The

local orbitals are obtained from the canonical Hartree—Fock
whereU is the Hubbard parametdrandU are chosen such orbitals using the localization method of Ohmieteal ,** and
that application of the Hamiltonian to a single carbon atomconsist of one occupied “valence-band” orbital and one un-
yields the ionization potential and electron affinity ofsgf  occupied “conduction-band” orbital centered on each unit
hybridized carbont is set equal to the ionization potential of cell, or carbon—carbon double bond. In S-CI the®ryhe
ansp? hybridized carbon, 11.16 eV, ahdlis set equal to the ground state remains the Hartree—Fock ground state and the
difference between the ionization potential and electron afexcited states are determined variationally using the trial
finity of an sp? hybridized carbony=11.13 eV?’ form,
The solvent is described using ekel theory,
\pisolated neutral__E C;wra' (7)
Hsov— I;ﬁ aﬁﬂlvag,g& . (4) a,r . .
- where s, has a hole in the valence-band orbital centered on
with aj","’ being nearest-neighbor transfer integrals chosetthe ath unit cell and an electron in the conduction-band or-
such that(8;°V+ 35°)/2=—2.4045 eV, as in the PPP model, bital centered on theth unit cell. The summation is over all
and positions of the electron and hole. With the parameters of
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FIG. 2. lonization potentials of polyenes,El,, . », calculated using the

PPP and MNDO HamiltonianeRef. 35. Koopman's theorem results are g1, 3. Electron affinities of polyenes,,(Ha, . », calculated as in Fig. 2.
shown, along with results obtained by comparing the Hartree—Fock energigg e 1o the minimal basis nature of the calculation, negative values for the
of the neutrals and ions. Experimental values are from Ref. 26. electron affinity are obtained for small polyenes. These negative values are

shown only to illustrate the chain-length dependence of the calculated elec-
tron affinity. Experimental values are from Ref. 26.

Sec. Il, the 1B, optical gap state contains a tightly-bound
electron—hole pair, and free electron—hole pair states begi
at the Hartree—Fock band g&p'®

Rather than use S-Cl theory to generate free electron
hole pair states, we consider a single h@ecationic poly-
ene and a single electrofan anionic polyene The cationic
polyene is described with the variational trial form,

ﬂ(r) of Eqg. (3). [While | of Eq. (2) displaces the calculated
IP and EA, it has no effect on either the predictedB}
optical gap or on IP-EA.The Ohno potential value fdd,
11.13 eV, is based on the ionization potential and electron
affinity of an sp? hybridized carbor}! This is not unique to
pi electron theory. Other semiempirical Hamiltonians, such
_ _ as ZINDO?2 MNDO,%® and AM12? also use properties of

pisolated cation. ' ¢y, (8 the isolated atoms to parametrize the electron—electron inter-

2 actions. It is worth noting that the Ohno potential gives rea-

where s, has a hole in the valence-band orbital centered orsonable agreement with the experimental energy ofﬂkgz
the ath unit cell. An analogous form is used for the anion. state of polyenes, a quantity that is very sensitive to the
Using Eq.(8), the energy of the cation relative to that of the strength of electron—electron interactidhs®3*
neutral polyene is given by the energy of the highest-  To allow comparison with experimental IP’s and EA’s
occupied-molecular-orbita(HOMO); thus this procedure of polyenes with both even and odd numbers of carbon at-
yields the Koopman’s theorem ionization potenti#?).?®  oms, and to allow inclusion of soliton formation energies, we
Similarly, the anion’s energy is given by that of the lowest-also consider MNDQRef. 23 calculations in Figs. 2—#
unoccupied-molecular-orbitaLUMO), and this procedure The MNDO Koopman’'s theorem IP—EA is about 7.0 eV,
yields the Koopman’s theorem electron affiniigA). The  similar to the 6.9 eV of PPP theory. The points labeled ver-
energy required to create a free electron—hole pair on a longcal IP and EA refer to calculations in which the Hartree—
chain is then taken as the polymeric limit of IP-EA. The Fock orbitals of the cation and anion are allowed to relax
resulting IP—EA is the difference between the Hartree—Foclafter addition or removal of the electron. Orbital relaxation
HOMO and LUMO orbital energies. This approach is thuslowers IP-EA of chains with an even number of carbon
equivalent to S-ClI theory in the long-chain limit, where free atoms to about 6.2 eV. Inclusion of geometric relaxation in
electron—hole pair states begin at the Hartree—Fock banghe cation and anion, as in the adiabatic IP and EA of Figs. 2
gap. and 3, lowers IP—EA of even carbon chains to 5.6 eV.

The PPP Koopman'’s theorem IP’s and EA’s are shown  In the calculations of Fig. 4, the soliton formation energy
in Figs. 2 and i; The long-chain limit of IP—EA is about 6.9 is included by considering the process
eV. Since the 1B, optical gap obtained from S-ClI theory is _
2.5 eV393lthis cc;lrresponds to an exciton binding energy of 2ConHan+ 2= Con-1Han 1"+ Cons 1Han s, ©)
about 4.4 eV. Note that the exciton binding energy is setheren is an integer and the molecules are noninteracting.
primarily by the electron—electron interaction potential, Charged chains with an odd number of carbon atoms are
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20 IV. EFFECT OF INTERCHAIN INTERACTIONS

Dielectric interactions with surrounding chains lower the
exciton binding energy because the solvation energy of the
] free electron—hole pair is greater than that of the exciton.
The calculations presented here compare the solvation en-
ergy of a single electrofa polyene anionand hole(a poly-
ene catiopto that of the exciton. Due to particle—hole sym-
metry in Eq.(1), the solvation energy of the anion is equal to
that of the cation, and only that of the cation is reported

+—+ positive soliton
N ™

[
W
T

—o
neutral polyene
NN

Heat of formation (eV)
)

St 1 below.
@—a negative soliton o o
P T T N A. Description of solvent polarization
00 10 20 30 0 The polarization induced in the solvent by static

charge distribution on the solute is obtained from the follow-

Length of polyene (carbon atoms) ) ) -
ing Hamiltonian:

FIG. 4. Heats of formation of polyenes,,,, ,, obtained using the

MNDO Hamiltonian(Ref. 39. The charged polyenes shown here have an H’ = Hsovy E T 5 <A>
odd number of carbon atoms, since these can support a single charged soli- = LiPI\Pi/s
ton. As discussed below E¢Q), comparison of these results yields a pre- ’

diction of 4.7 eV for the energy required to create a well-separated positive solv : . . .
and negative soliton on an isolated chain of polyacetylene. where H** is the Hickel Hamiltonian of Eq.(4), and the

second term is similar to Eq6) but with (p;) the static
charge on thé™ solute atom. The solvation energy is the
difference in energy between the ground state of the isolated
solvent chain, as described By*°", and the ground state
used since such chains can support a single charged solitogs H .
In the long chain limith—c, the energy of the above reac- T describe the polarization induced by a dynamic solute
tion is equal to the energy required to create a well-separategharge distribution, the electronic—polaron model of Sec.
positive and negative soliton on a single chain, 4.7 eV for thav E uses a basis set for the solvent polarization. Here, we
MNDO results of Fig. 4. Similar results are obtained with theintroduce this basis and test it by calculating the solvation
MINDO (4.4 eV), AM1 (45 eV) and PM3 (4.7 eV)  energy of various static charge distributions.
Hamiltonians® This is much larger than the observed The solvent basis functions afe,, the unpolarized sol-
threshold for charged soliton production in polyacetyleneyvent, and®, and @}, the solvent as polarized by various
which is very near the optical gap of around 1.8 %¥. positions of the electron and hole on the solubg.is the
Similar results are obtained from S-CI theory on otherground state of the isolated solvent, as describeti ¥ of
polymers and using other semiempirical Hamiltonians. FoiEq. (4). ®, is the ground state of the solvent in the presence
instance in PPV, S-ClI solution of the PPP Hamiltonian withof a hole on theath unit cell of the solute. More precisely,
Ohno parameterization yields an exciton binding energy ofP, is the ground state oH' in Eq. (10), with (p;)
about 3 e\A* and S-CI/INDO calculations yield an exciton =¢(#alpil#.), where y, is the wave function of a solute
binding energy of about 2.75 &¥. with a hole on theath unit cell, see Eq(8). The magnitude
Since semiempirical calculations that include orbital re-of the solute charge distribution is multiplied by a constant
laxation give good agreement with the ionization potentiaiscaling factorZ, for reasons to be discussed belaby is the
and electron affinity of short polyené&the calculations of ~Polarization induced in the solvent by a hole on &th unit
Figs. 2—4 may be viewed as using semiempirical Hartree-Cell gnd an el'ectron on theh unit cell of the solute. More
Fock theory to extrapolate from experimental results on shorrecisely, @; is the ground state ok’ in Eq. (10), with
polyenes to the long-chain limit. There is a potential problem{Pi) = ( Yalpil o), whereys, is the solute wave function of
with this extrapolation procedure. Suffai® and Liegené?®  Ed: (7). When calculating the polarization induced by a poly-
find that when dynamic correlation is included in single- €€ cation, the solvent basis set is,

(10

chain calculations, an on-chain polarization cloud is formed N
alrou.nd the charge§ and this significgntly Iower§ the exciton  ypsolvent Co®o+ 2 @, (12)
binding energy. This effect of dynamic correlation may be- a=1

come increasingly important on longer chains, and its ab- _ _
sence from the calculations of Figs. 2—4 may mean that théhere N is the number of unit cells on the solute. When
long-chain limits of IP and EA are not reliable. We commentcalculating the polarization induced by the exciton state, the

on this further in Sec. V. The remainder of this paper focuseSC/Vent basis set is,

on another factor that likely plays a central role in establish- N
ing the explton binding energy—dielectric interactions be- provent ¢ o+ E L. (12)
tween chains. ar=1
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15 . ' hanced Coulomb interaction with the solute charge distribu-
Length of solvent: 4 tion. There is some critical value for the magnitude of the
40 unit cells o solute charge distribution; of Fig. 5, at which this occurs.
- Since the Coulomb interaction energy between the solute and
the charge-separated solvent initially increases with solvent
chain length, charge separation occurs more easily, i.e., at
smaller values of, on long solvent chains. The squares in
Fig. 5 show the solvation energy of the charge distribution
corresponding to a hole on the first unit cell and an electron
on the ninth unit cell ba 9 unit cell solute, multiplied by.
?1 With this solute charge distribution, charge separation occurs
? 1 on the solvent chain whefi>0.5.
. ; 2 The formation of this charge-separated state is not, in
- cococee® itself, of interest to the current study. While highly-localized
charge distributions may be able to induce charge separation
o solvation of W, - in a nearby chain, such charge distributions are not a focus of
0 ~ - this papef® The basis functiond, and®', do describe the
0 0.5 1.0 L5 polarization induced by localized charges; however, the basis
g set is used to describe the polarization induced by much
_ _ o __more diffuse charge distributions, namely, those arising from
FIG. 5. Solvation energy of static charge distributions calculated by direct . . ;
solution of the Hamiltonian in Eq(10). Results labeled),_, are for the a hole or exciton delocalized over a long polyene chain. We

charge distribution arising from a hole on the first unit cell of a solute with Will see below that the solvent basis performs best whin

9 unit cells.y4=3 refers to a hole on the first unit cell and an electron on the chosen such thab, and @} are not in the charge-separated
9th unit cell of a solute with 9 unit cells. The charge distributions are regime

T e e st ESPorse, e S0MA15 W willtest two separate aspects of the solvent basis.
value of is due to the formation of a charge-separated ground state on thd he first is the ability of a linear combination of an unpolar-
solvent chain. ized and polarized basis function to describe the polarization
induced by a charge distribution with identical spatial distri-
bution but different magnitude. Consider the polarization in-
Note that the solvent basis functiond,, ®,, and®, are duced by a point charge located at the center of the solute
normalized but not orthogonal. chain in Fig. 1. We define, as the solvent wave function in
The basis sets of Eq$11) and (12) will be used to the presence of a point charge of magnitugecalculated
describe the polarization induced by an exciton or a holdrom Eq. (10). A basis for the polarization induced by an
delocalized over a polymer. These charge distributions ar@rbitrary point chargeq’, is then constructed from the un-
much more diffuse than the charge distributionsjgfor ¢,  Polarized solventb, and the polarized solveri,,
which describe holes and electrons localized at specific po-
sitions on the solute. Thus in generatidg and ®, the psovent ¢ o+ c1dy. (13
solute charge distribution is multiplied by the scaling param-
eter, {(<1. This is also useful because the localized charg&he linear variational coefficients, andc,, are determined
distributions ofys, or ¢, can induce charge separation in the from the lowest-energy eigenvector of the Hamiltonigt,
solvent. We will show below that the basis set performs bestf Eq. (10), in the basis[d)o,d)q]. The matrix elements are
when( is chosen such thab, and®}, are not in the charge- determined as described in the Appendix. Figure 6 compares
separated regime. the solvation energy obtained from the above basis set to that
The circles in Fig. 5 show the solvation energy of theobtained from explicit solutions dfl’. Since the energy of
charge distribution corresponding to a hole on the first unithe polarized solvent is calculated variationally, a better basis
cell of a 9 unit cell solute, multiplied by the scaling factor  set gives a lower energy for the polarized solvent and thus a
For a linear solvent response, the solvation energy is propotarger solvation energy. The basib,, P, 5| gives the solva-
tional to {%, and it is this proportionality constant that is tion energy of a charge with magnitude betwegr-0.0 and
shown in the figure. The response is approximately linear fof.4 with an accuracy of better than 0.75%, equivalent to the
scaling factors{, below some critical value, beyond which magnitude of the nonlinearity in the exact response over this
the solvation energy becomes large and nonlinear. This nomange. Similarly, the basigb,,®, 4] gives the solvation en-
linearity is due to “dielectric breakdown” in the solvent ergy of a charge with magnitude between 0.0 and 0.8 to an
chain and the formation of a charge-separated ground stataccuracy of better than 4%, which is once again equivalent to
(Formation of the charge-separated state is analogous tothe magnitude of the nonlinearity in the exact response over
transition to a cyanine electronic structure, although in thahis range. A unit point charge is sufficient to induce
current calculations, the geometry is fixed at the polyeneharge-separation in the solvent, as indicated by the rapid
structure). This transition occurs when the energy required toincrease in the exact solvation energy tpr>0.9. ®; then
form a charge-separated solvent state is offset by the emescribes a charge-separated solvent, and Fig. 6 indicates

30 unit cells

o
<
T

T

!

!

|

!

12 unit cells |
P

—

r=9
L o solvationof W, =1

e
n

Solvation energy/{Z (eV)
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1 1 0.2 o—©
0.0 0.5 1.0 4 04 5—a
q'=magnitude of point charge being solvated ] 10 0.6 o—»
s I 0.8 &—=a A
FIG. 6. The solvation energy of a point charge with magnitgtcated at §
the center of the solute chain in Fig. 1. The “exact” result is obtained from )
direct solution of Eq(10). Also shown are results obtained with a basis set g
consisting of two basis functions; the unpolarized solvent and the solvent as E 5t J
polarized by a charge with magnitudgsee Eq(13)]. Since the energy of g
the polarized solvent is calculated variationally, a better basis set will give a 4]
larger solvation energy. 53
0 ' ' L L L
0 2 4 6 8 10 12

that the basi§®,,®,] does not provide a good description of
the solvent polarization in the noncharge-separated regime.

Next, we test the ability of the basis of E@L1), con-  FiG. 7. The upper panel shows the solvation energy of the static charge
structed from the polarization induced by localized chargdlistribution corresponding to positively charged polyenes of various lengths.
distributions, to describe the polarization induced by a dif-The “exact” res_ult is qbtained frqm direct solution of E@.0). Also shown
fuse charge distribution. Consider the delocalized charge di{}re results obtained with the basis set of ). The lower panel shows the
isagreement between the basis set results and the “exact” results. Since
tribution of an isolated cationic polyene, as described by Eqthe energy of the polarized solvent is calculated variationally, a better basis
(8). The exact solvation energy of this charge distribution byset will give a larger solvation energy.

a solvent chain with 40 unit cells, obtained from direct solu-

tion of H' in Eq. (10), is shown as the thick solid line in the ) o ) )

upper panel of Fig. 7. Note that the localized charge distri{@in an exciton binding energy of 0.5 eV in polydiacetylene,
bution of a solute cation with 1 or 2 unit cells induces chargebe and co-workerS lowered the Hubbard parametdy,
separation in the solvent chain and this leads to an anom4f©m 11 eV to about 5 eV and used a dielectric constant of
lously large solvation energy. Also shown in Fig. 7 are thegreater than 5 for the Iong—range Cpulomb mteracﬂon. If we
solvation energies obtained from diagonalizing of Eq.  a@ssume that the Ohno parametrization, Bgwith U=11.13
(10) in the basis of Eq(11). With (=1, the solvent basis ev,is approp_rlate for |solf_;1ted molecules and that interactions
functions®, are in the charge-separated regifeee Fig. 5, ~ Petween chains can be incorporated by modifying), a
and the basis gives a poor description of the polarizatiorﬁ‘umber o_f physically unreasonable pred_|ct|ons result. For in-
induced by the diffuse charge distribution of a polyene catiorstance, since the ground state energy includes Coulomb in-
with three or more unit cells. Witt=0.2 and a solute chain teractions between all pairs of electrons, lowerldgby a
length of greater than three unit cells, the error introduced byeW €V lowers the ground state energy by many eV's per
using the basis of Eq11) is less than 10%. Faf=0.6, the m-electron. This redyctlon in groqnd—state energy corre-
error drops to under 5%. Note also that the use of the solveriPonds to an unphysically large solid-state cohesion energy.
basis suppresses charge-separation in the solvent chain, %gl_ld-state cohesion arises from dlspersmn_ forces and_mte_r-
evidenced by the absence of an enhanced solvation energy@gtions between permanent moments, neither of which is
short chain lengths in Fig. 7. well modeled by changing(r).

Including Coulomb screening from adjacent chains by
modifying U(r) could be rationalized if the motion of elec-
trons on the solvent chains was much faster than that on the

A simple approach to the inclusion of Coulomb screen-solute chain. If this were true, then the polarization of the
ing in solid-state calculations is to adjust the single-chainsolvent chains would be set by the instantaneous charge dis-
electron—electron interaction potentidl(r) of Eqg. (3). tribution on the solute, thereby screening the electron—
Rather substantial changes W(r) are needed to obtain electron interaction. However, it is unlikely that such a sepa-
agreement with solid-state experiments. For instance, to olration of time scales is valid.

Length of solute polyene (unit cells)

B. Relevant time scales
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Rather than modify electron—electron interactions, the . .
methods developed below consider how interchain interac- 035 | g
tions modify the electron—hole interactions present in the
excited states. In this case, the relevant time scales are those
of the solvent polarization as compared to electron—hole mo-
tion. The time scale of the solvent polarization is inversely
proportional to the optical gap of about 2 eV. The time scale
for electron—hole motion in the exciton is inversely propor-
tional to the exciton binding energyA nonstationary state
prepared with a dipole moment pointing to the left will os-
cillate to the right on this time scajeWhen the exciton
binding energy is only a few percent of the band gap, as in
many inorganic semiconductatsthe electron—hole motion sorcened o-h G—gl
is orders of magnitude slower than the solvent polarization. electronic polaron:
In such systems, the polarization of the surroundings can Myy=2 —
follow the motion of the electron and hole and thus a Mypge=1 +—*
screened electron—hole interaction potential is used in Wan- Mypg=0 +—

. - 1 . . - reaction field 6—©
nier exciton theory! But in polymers, the exciton binding 0.05 . . .
energies may be greater than 2.5 eV for an isolated chain 0 5 10 15 20
(Sec. Il) and 0.5 eV or larger in the solid state’'® A Length of solute polyene (unit cells)
separation of time Scales. IS .then not apparéfhe time FIG. 8. Solvation energy of a polyene cation due to interaction with a
scale of electron—hole motion in thelEr‘u state of polyacety- solvent chain with 40 unit cells. The reaction-field, screemedh and
lene is set by the exciton binding energy on an undistorte@lectronic—polaron models are described in Secs. IV C, IVD, and IVE,
chain. That photoexcitation leads to charged solitorrespectively. All solvation energies are calculated using the solvent basis of
productioi—8 does not imply this binding energy is zero, but E9- (11, constructed using a scaling factgr0.5.
only that it is less than the energy to be gained by charged
soliton production, i.e., it must be less than twice the binding
energy of a charged soliton. The soliton binding energy ha%f
been estimated as 0.15 eV from experinfelt.Sec. IlI, the
MNDO energy predicted for formation of a free electron—
hole pair on an isolated chain is about 6.2 eV if soliton
formation is ignored, and about 4.7 eV if soliton formation is
included, implying a large soliton binding energy of about

0.75 V) The solvation energies due to interaction with a solvent

A model that. includes the. tlme. scale of bqth the chain with 40 unit cells are shown as the circles in Figs. 8
electron—hole motion and the dielectric response is devel:

. ) . ) o and 9. The exciton state, Fig. 9, has no solvation energy in
oped in Sec. IV E; but first, we consider two limiting Cases. i model since the expectation valués,) of Eq (10), are

all zero. These results are discussed further in Sec. V.

025 |

0.15

Solvation energy of cation (eV)

The solvation energy is calculated by diagonalizi§

Eqg. (10 in the basis set of Eqll). The basis set is
constructed with/=0.5. (Results for otherZ are shown in

Fig. 7) As discussed at the end of Sec. IV A, the use of the
basis suppresses the tendency of a localized charge distribu-
tion, such as that of a short polyene cation, to induced charge
separation in the solvent chain.

C. Simplified reaction-field model

The reaction-field model assumes the dielectric respons[e)' Screened electron—hole interaction model

of the solvent is much slower than the charge fluctuations  This limit is that of Wannier exciton theo,where the
arising from electron—hole motion on the solute. In thedielectric response of the solvent is assumed to be much
implementation used here, the electron and hole on the solufaster than the charge fluctuations arising from electron—hole
are first delocalized as in Eq&) and(8), and the averaged motion on the solute. The solvent polarization is then set by
charge distribution is then solvated. This differs from thethe instantaneous position of the electron and hole, leading to
self-consistent reaction-fieldSCRP model#?*® which al-  dielectric screening of the electron—hole interaction. This
lows interaction with the solvent to alter the solute chargemodel is implemented by starting with the matrix represen-
distribution. Since the systems studied here do not have tation of the solute Hamiltoniam] %' of Eq. (2), in the solute
permanent dipole moment, our model should not differ sig-basis, s, or ¢, of Egs.(8) and (7). The solvation energy of
nificantly from the SCRF model. An important exception is the charge distributions corresponding#g or ¢, are then
when solvation effects are sufficiently strong that the SCRFealculated using the basis sets of Ed4) or (12), and added
model favors symmetry-breaking on the solute chain. Foto the diagonal of the Hamiltonian matrix. The resulting ma-
instance, in the case of a charged polyene, the SCRF modtilx is then diagonalized. Note that, as discussed at the end of
may favor the localization of charge on some portion of theSec. IV A, the use of the basis set suppresses the tendency of
chain. This charge localization is not allowed in the reactionthe localized charge distribution gf, or  to induce charge
field model used here, which assumes the solute charge diseparation in the solvent. The calculated solvation energies
tribution is that of the isolated solute polyene. are shown as the squares in Figs. 8 and 9.
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screened e-h E—8 !
0.15 electronic polaron: ~
Miag=2 * > O Myyg=2
mlag=1 = 025 | ‘ O my,,=1 |
3 mig=0 +— e \ 0 migg=0
< reaction field 6—o g B
S N ‘: ‘.l
5 010 5 i
: i
3 1
2 g '
EB § g g g g g ‘,3 g
% b s el & o © o e © o g p 8
o 2 0.20 | P g \ ]
2 0.05 5 </ S IR
S ] i
% = " ® &
& -% Length of solvent chain: N \ \
= 40 unit cells A Vo
] 30 unit cells ------ " \
12 unit cells - — - "
0.00 S S —— O g o &
0 2 4 6 8 10 0.15 1 e, Y
Length of solute polyene (unit cells) 0 0.5 1.0 1.5

 used in constructing solvent basis set

FIG. 9. Sol_vatiqn energy of the exciton_state, du_e o interaction With. 4r1G. 10. The solvation energy of a polyene cation with 9 unit cells, calcu-
solvent chain W.'th 40 unit ce]ls. Al solvatlon_engrgles_are_calculated USNYated using the electronic—polaron model of Sec. IV E. The calculation uses
the solvent basis of Eq12) with {=0.5. Notation is as in Fig. 8. the basis set of Eq.11), with various values for the scaling parameter
Since the energy of the polarized solvent is calculated variationally, a better
basis set will give a larger solvation energy. Comparison with Fig. 5 shows
E. Electronic_polaron model that the basis fails whetiis such that the basis function®, , are charge
I .
In this model, the Hamiltonian of Eq1) is diagonalized separated
in a direct-product basis of solute and solvent functiths.
The solute basis functions are thig and ¢, of Egs.(8) and
(7). The solvent basis functions are thg and @} of Egs.
(11 and (12). Since the full Hamiltonian is used and the
matrix elements are evaluated exadige the Appendijx no
assumptions are made about the relative time scale of
electron—hole motion as compared to solvent polarization.
For the exciton calculation, the size of the complete
direct-product basis scales 8, N being the number of unit
cells on the solute. To avoid this rapid increase in the size of
the basis with solute chain length, the following variational

form is used for the combined solute—solvent wave
function#®

0.065 |-

0.060

|a’ B a| = Migg
|r,_r|$mlag.
(14

A similar basis may be constructed for the cation.Mg; is
increased, this basis approaches the full direct-product basis.
When mj,,=0, each solute functiony, is paired with the
corresponding solvent polarizatioh}; the spatial distribu-
tion of the solvent polarization is thereby constrained to fol- ) .
low the motion of the electron and hole on the solute, and the 0 05 . 1.0 . 1.5

L - . € used in constructing solvent basis set
variational procedure adjusts only the magnitude of the po-

lar_'zat'on by changing the ratlo. of th:e andd Coeff'c'?nts- FIG. 11. The solvation energy of the exciton state of a polyene with 9 unit
With mj,.>0, the solvent polarization may lag behind the cells, calculated using the electronic—polaron model of Sec. IV E. The cal-
motion of the electron and hole, and the variational proceculation uses the basis set of H3§2), with various values for the scaling
dure has more flexibility in determining the spatial distribu- Parameter. Since the energy of the polarized solvent is calculated varia-
. . tionally, a better basis set will give a larger solvation energy. Comparison
tion of the polarization.

' ) with Fig. 5 shows that more rapid convergence with, is obtained wherf
Figures 10 and 11 show the solvation energy as a funds such that the basis functiods, are not charge separated.

v-3 oo 3 ol
) a'r’

0.055

Length of solvent chain: \ \
40 unit cells
30 unit cells ------ \
12 unitcells - — -

Solvation energy of exciton on polyene with 9 unit cells (eV)

0.050
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4224 Moore, Gherman, and Yaron: Exciton binding energies in conjugated polymers

0.8 . . shows the solvation energyrfa 9 unit cell solute and a 40
unit cell solvent, as a function of the optical gﬁg""’. The
quantity shown is

0.7

_ Eelectronic—polaron_ Ereaction—field
Erelative™ J (15)

Escreenede—h - Ereaction-field

0.6 E where Eejectronic—polaron Ereaction-fiels 8N Escreenede-n are the
solvation energies obtained from the electronic—polaron,
reaction-field, and screened electron—hole interaction mod-
els, respectively. Wherk,.ive=1, the electronic—polaron
model agrees with the screened electron—hole interaction
model, and wherkE,.,;,e=0, the electronic—polaron model
agrees with the reaction-field model. Since charge separation
occurs more easily when the solvent band gap is reduced, a
scaling factor of{=0.3 is used to insure that the solvent
basis functions are not in the charge-separated regime.

Erelative
o
ta

0.4

0.3

V. DISCUSSION

02

0 05 1.0 1.5
]/Egsolv @V This paper considers separately, the exciton binding en-

ergy of a hypothetical isolated chain of polyacetylene, and

FIG. 12. Comparison of the solvation energies predicted by varioudhe effects of interchain interactions on this binding energy.
electron—hole screening models, as a function of the band gap of the sof<jgures 2—4 use semiempirical quantum chemistry to predict

vent. The solute polyene has 9 unit cells, and the solvent polyene has 40 un[ihe exciton binding energy of an isolated chain. Since the
cells. The plotted quantityE,ejaive Of EQ. (15), is 1 when the electronic— )

polaron model agrees with the screened electron—hole potential model, asﬁ%rediCtions agree with experiments on short chains, this ap-
expected when the band gap is large and the solvent polarization is fagproach may be viewed as using semiempirical Hartree—Fock
Erelaive €quals O when the electronic—polaron model agrees with thetheory to extrapolate from molecular data to the polymeric
reaction-field model, as is expected when the band gap is small and theit The energy predicted for formation of a free electron—
solvent polarization is slow. The solvent basis is constructed using a scalllngI | . isol . . .
factor £=0.3. ole pair on an isolated chain of polyacetylene is 6.2 eV if
soliton formation is ignored, and about 4.7 eV if soliton for-
mation is included. This is much larger than the observed
tion of the scaling factor, used in constructing the solvent threshold for charged soliton production in polyacetylene,
basis. The solute chain has 9 unit cells and the solvent chaiwhich is near the optical gap of about 1.8 &,
has 12, 30 or 40 unit cells. The calculated solvation energy is  Interactions with adjacent chains lower the exciton bind-
relatively insensitive to the value af provided{ is suffi-  ing energy since the solvation energy of the free electron—
ciently small that the basis functiods, or ® are not in the hole pair is larger than that of the exciton. The solvation
charge-separated regime. Figure 5 shows that charge sepaemergies, calculated using a number of different models, are
tion in @, of a 40-unit-cell solvent chain occurs whér0.9,  shown in Figs. 8 and 9. The solvent chain length is 40 unit
and Fig. 10 shows that above this point, the basis gives eells, sufficient to saturate the calculated solvation energies
poor description of the solvent polarizatiofThe procedure (see Figs. 10 and }1Due to particle—hole symmetry in Eq.
is variational in the sense that a better basis set will give &1), the solvation energy of a polyene anion is equal to that
larger solvation energyFigure 5 shows that charge separa-of the cation, and the solvation energy of a free electron—
tion in @, of a 40-unit-cell solvent chain occurs whér0.6,  hole pair is twice that of the cation shown in Fig. 8.
and Fig. 11 shows that this leads to slower convergence with The simplified reaction-field model of Sec. IV C as-

respect tam,g. sumes the solvent polarization is much slower than electron—
Figures 10 and 11 also indicate that the solvation energihole motion on the solute. The solvent polarization is then
is saturated by a solvent chain length of 40 unit cells. set by theaveragedcharge distribution of the solute. Within

The dependence of the solvation energy on solute chaithis model, the exciton state is nonpolar and has zero solva-
length is shown in Figs. 8 and 9. The scaling fact@ris  tion energy(Fig. 9). For the cation, as the solute chain length
fixed at 0.5. The solvation energies from the electronic—is increased, the solute charge distribution becomes increas-
polaron model are intermediate between those of théngly diffuse and the solvation energy tends toward zero
screened electron—hole interaction model and the reactioriFig. 8). Soliton formation will localize the solute charge
field model. This indicates that the time scale for electron—distribution and lead to a finite solvation energy in the long-
hole motion is comparable to that of the solvent polarizatiorchain limit. Given an estimated soliton sf28” of 14 unit
and a separation of time scales is not valid. cells*4°a rough estimate for the solvation energy from this

Changing the optical gap of the solveE@o"’ of Eq. (5), model is that of an undistorted polyene cation with 14 unit
changes the time scale of the solvent polarization. Figure 12ells, about 0.1 eV in Fig. 8.
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At the opposite extreme is the screened electron—holelectron and hole in the large band-gap limit. In the small
interaction model of Sec. IV D, which assumes the solvenband-gap limitE .. fOr the exciton approaches something
polarization is much faster than electron—hole motion. Thenear zero; however: e fOr the cation-approaches 0.5.
solvent polarization is then set by thestantaneougosition ~ This may indicate that the charge on the cation self-traps,
of the electron and hole, thus screening the electron—holf®rming an electronic polaron with a bandwidth that goes to
interaction. In this model, the solvation energy of the excitonzero in the limit of an infinitely slow dielectric response. As
is about 0.16 eMFig. 9), and that of a well separated elec- discussed in Sec. IV C, the reaction field model used here
tron and hole is twice that of the cation, about 0.68(&\g. assumes the solute charge distribution is that of the isolated
8). The exciton binding energy is then reduced by 0.52 eV.solute, and thus does not allow the solvent to induce charge

The electronic—polaron model of Sec. IV E makes nolocalization on the solute.
assumptions about the relative time scale of electron—hole To address the solid-state exciton binding energy, we are
motion vs solvent polarization. Figures 8 and 9 show that thavorking on the following extensions to the model. First, the
predicted solvation energies lie between those of théumber of solvent chains must be increased to allow extrapo-
reaction-field and screened electron—hole interaction model#ation to the solid-state limit. On-chain polarization effects
This can be understood as follows. Formation of a polarizaalso need to be included. In the electronic—polaron model
tion cloud around the electron and hole leads to a favorablétroduced here, the electron and hole are dressed by the
electrostatic interaction between the solute and solvenpolarization of the solvent chain. In addition, the electron
chains; however, the resulting increase in the effective masand hole may be dressed by on-chain polarization, which is
of the electron and hole lowers the delocalization energyignored in Hartree—Fock and S-Cl theory. Sdhdt and
The electronic—polaron model includes these changes in et-iegenef® find that on-chain polarization has a large effect
fective mass, since it calculates the matrix elements of thén the exciton binding energies calculated fra initio
full Hamiltonian, Eq.(1), between the basis functions of Eq. theory. In a semiempirical Hartree—Fock approach, the pa-
(]_4) However, the increase in effective mass is ignored byameterization to small molecules may partially include such
the screened electron—hole interaction model, which modion-chain polarization effects. However, if the effects of on-
fies only the Coulomb interaction between the electron anghain polarization are chain-length dependent, the use of
hole. The screened electron—hole interaction model therebgjemiempirical Hartree—Fock theory to extrapolate from short
overestimates the solvation energy of the exciton by 130940 long chains, as in Figs. 2—4, may not be valid. Finally,
and of the cation by 35%, relative to the electronic—polarorSigma electrons should be included in the solvent chain. Ad-
model. Since the overestimation is larger for the exciton, andlition of sigma electrons to the solvent is not expected to
the screened electron—hole interaction model is valid fo@reatly alter the polarizability along the chain, however, it
slow electron—hole motion, this suggests that electron—holill likely have large effects on the polarization perpendicu-
motion is faster in the exciton than in the cation or anion. lar to the polymer axis. This is especially true for the polar-

The electronic—polaron model gives a solvation energyzability perpendicular to the plane of the polymer, which is
of about 0.50 eV for a free electron—hole péirice that of ~ Zero in a pi-electron mode{This component of the polariz-
the cation in Fig. Band 0.07 eV for the excito(Fig. 9). The ability does not contribute to the solvation energy in the
predicted reduction of the exciton binding energy is thengeometry of Fig. 1.
about 0.43 eV, a relatively large number for interaction with ~ The electronic—polaron model presented here finds that
a single chain. interaction with a single chain lowers the exciton binding

The time scale of the solvent polarization is set by theenergy by 0.43 eV. Given this large reduction from interac-
optical gap of the solvent chain. Figure 12 shows the relativéion with a single chain, these calculations strongly suggest
solvation energies for a range of solvent optical gaps. Théhat interchain interactions play an important role in estab-
quantity shown, E,give Of EQ. (15), is 1 when the lishing the exciton binding energy. The calculations pre-
electronic—polaron model agrees with the screened electronsented here also strongly suggest that interchain interactions
hole interaction model and 0 when the electronic—polarorre not well modeled by simply reparametrizing a single
model agrees with the reaction-field model. The results ofhain Hamiltonian to solid-state data. By developing an ex-
Fig. 12 show the expected trend. For large solvent opticaPlicit model of Coulomb screening, we hope to achieve a
gaps, corresponding to a fast dielectric response, the solv&nore realistic model of the photophysics of conjugated poly-
tion energy tends towards the screened electron—hole intefaers, with better transferability of parameters between poly-
action model. For small solvent optical gaps, correspondingner systems, and with the ability to utilize detailed informa-
to slow dielectric response, the solvation energy tends totion available from both experimental studies aatul initio
wards the reaction-field model. However, it is not clear whycalculations on molecular systems to make predictions for
E elaive d0€S not identically approach these limits. In thesolid state properties.
screened electron—hole interaction model, the size of the
electron and hole is set by the localized Hartree—Fock orbit-
als obtained from calculations on an isolated cha#e Sec. AckNOWLEDGMENT
[II). That E,¢.ive does not identically approach one in the
large band-gap limit may indicate that the localized Hartree—  This work was supported by the National Science Foun-
Fock orbitals are not the optimal choice for the form of thedation(Grant No. CHE-9530148
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APPENDIX: HAMILTONIAN MATRIX ELEMENTS whereC is the matrix of cofactors 08°°“. The determinant

. o of S} can then be obtained from,
The matrix elements of the Hamiltonian, E(.), be-

tween the basis functions of E(lL4) are |Sr|=2 <$|¢ \C, (A9)
a - I,a

(W [HI Py ) = (Uil H Yol (@ | @7,) _ _ _
The computationally expensive step of evaluating the cofac-
+ 8,0, S<¢E'I|H30IV|¢;’,> tor matrix, C, need be done only once for each set of func-
tions, CD;, and CDE,. We could not find a similar computa-
|¢f’,> tional simplification for a two-electron operator, and this is
2 our primary motivation for using the kel Hamiltonian,
Eq. (4), to describe the solvent.

X{(plpil o) (A1)
{slpilya) Assummgdb and(bb, contain doubly occupied spatial

The matrix elements between solute functions are the stansjta|s leads to further simplification, and H#&6) becomes
dard matrix elements of Cl theoff.The matrix elements

between solvent functions are calculated as follows. S 1Al 2

; ; ) . d/,|0|D,,)=2|S" Oaat2|S° o]
Consider two smgle Slater determinant wave functions, (O ®z) =259 ; 2at2S92 Or 4l

such asbb, andCD of Eq. (A1), that describe the solvent in (A10)

the presence of two different solute charge distributions  where the matrices and summations are as above, but with all

indices referring to spatial rather than spin—orbitals.

+3 U(r, (D55

®F,=ala}...|0); ®L =ala}...|0), (A2)
Whereafr

Eir creates an electron in spin—orbita] of d)b, :
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