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Hartree–Fock solutions of the Pariser–Parr–Pople and MNDO Hamiltonians are shown to give
reasonable predictions for the ionization potentials and electron affinities of gas-phase polyenes.
However, the energy predicted for formation of a free electron-hole pair on an isolated chain of
polyacetylene is much larger than that seen in the solid state. The prediction is 6.2 eV if soliton
formation is ignored and about 4.7 eV if soliton formation is included. The effects of interchain
interactions on the exciton binding energy are then explored using a model system consisting of one
solute and one solvent polyene, that are coplanar and separated by 4 Å. The lowering of the exciton
binding energy is calculated by comparing the solvation energy of the exciton state to that of a
single hole~a cationic solute polyene! and a single electron~an anionic solute polyene!. It is argued
that when the relative timescales of charge fluctuations on the solute and solvent chains are taken
into account, it is difficult to rationalize the electron–electron screening implicit in the
parametrization of a single-chain Hamiltonian to solid-state data. Instead, an electron–hole
screening model is developed that includes the time scales of both the electron–hole motion and the
solvent polarization. The predicted solvation energies, which are saturated with respect to solute and
solvent chain length, are 0.07 eV for the exciton and 0.50 eV for a well separated electron–hole pair.
Given this large, 0.43 eV reduction in the exciton binding energy due to interaction with a single
chain, it seems likely that interchain interactions play a central role in establishing the solid-state
exciton binding energy. ©1997 American Institute of Physics.@S0021-9606~97!50310-2#
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I. INTRODUCTION

In light-emitting-diodes~LEDs! based on conjugate
polymers, an electron and hole are injected into an undo
conjugated polymer, such as poly-~para-phenylene vinylene!
~PPV!.1,2 These charges migrate through the material a
combine to emit a photon. An important quantity for dev
oping an understanding of this process is the exciton bind
energy, the difference in energy between a well-separa
electron–hole pair and the state that emits the photon
polydiacetylene, both photoconductivity3 and electro-
absorption4,5 measurements find an exciton binding ener
of 0.5 eV. In polyacetylene, photoexcitation leads to t
rapid formation of both charged and neutral solitons.6–8 In
PPV, experimental estimates for the exciton binding ene
include near 0.0,9 0.2 eV,10 0.4 eV,11,12 and 0.9 eV,13,14 and
theoretical estimates include 0.4 eV~Ref. 15, 16! and 0.9
eV.14

Here, we use semiempirical quantum chemistry to p
dict the exciton binding energy of an isolated polymer cha
and to explore the effects of interchain interactions on t
binding energy. Many theoretical studies of conjugated po
mers use a single-chain Hamiltonian with parameters fi
solid-state observations.14,17–20The resulting parameters ar
typically quite different from those used in standard sem
empirical quantum chemistry models such as PP21

ZINDO,22 or MNDO.23 In particular, to obtain agreemen
with solid-state exciton binding energies, the Coulomb rep
sion between electrons must be substantially weaker
that present in standard chemical parametrizations.17,19,14

This need to weaken the electron–electron interactions
single-chain Hamiltonian may reflect the importance of Co
4216 J. Chem. Phys. 106 (10), 8 March 1997 0021-9606/97/

Downloaded¬11¬Nov¬2003¬to¬128.101.156.62.¬Redistribution¬subjec
ed

d
-
g
ed
In

y
e

y

-
,
is
-
o

-

l-
an

a
-

lomb screening from adjacent polymer chains. Our goal is
develop explicit models for this screening process. Expl
inclusion of screening will likely lead to better transferabili
of parameters between different polymer systems. It sho
also allow detailed information on molecules, either fro
experiment or high-levelab initio calculations, to be used in
the parametrization of solid-state models. The use of mole
lar data is especially important when detailed solid-state
perimental data are difficult to obtain, such as when mod
ing the effects of chemical defects and physical morpholo

The effects of interchain interactions on the excit
binding energy are studied using a model system consis
of one ‘‘solute’’ polyene and one ‘‘solvent’’ polyene.24,25

When the relative time scales of charge fluctuations on
solute and solvent chains are taken into account, it is diffic
to rationalize the electron–electron screening implicit in t
parametrization of a single-chain Hamiltonian to solid-st
data. Instead, we adopt an electron–hole screening m
and demonstrate that the relative time scales of electr
hole motion and solvent polarization are such that a sim
screening of the electron–hole interaction is not valid.

Section II describes the chemical system being stud
and defines the Hamiltonian. Section III uses semiempir
quantum chemistry to extrapolate the ionization potential a
electron affinity of polyenes26 to the long chain limit, yield-
ing a prediction for the energy required to create a f
electron–hole pair on an isolated polyacetylene chain. S
tion IV develops models for the effects of interchain intera
tions on the exciton binding energy, Sec. IV A introduces
quantum chemical basis set used to describe the polariza
of the solvent chain, Sec. IV B discusses the time scale
importance to the screening process, Secs. IV C and IV
106(10)/4216/12/$10.00 © 1997 American Institute of Physics
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4217Moore, Gherman, and Yaron: Exciton binding energies in conjugated polymers
consider simple limiting cases for these time scales, and
IV E develops a general electron–hole screening model
includes the time scales of both electron–hole motion
the dielectric response. The results of these models are c
pared and discussed in Sec. V.

II. HAMILTONIAN

The solvation energy calculations are performed on
model system consisting of two polyenes, one solute and
solvent chain~Fig. 1!. The Hamiltonian is,

H5Hsol1Hsolv1Hsol–solv. ~1!

The solute is described using Pariser–Parr–Pople theor21

Hsol5 (
i , j ,s

@2Id i , j1a j ,i
sol#aj ,s

† ai ,s1
1

2 (
i
U~ r̂ i21!r̂ i

1(
i, j

U~r j ,i !r̂ j r̂ i , ~2!

whereai ,s
† (ai ,s) creates~destroys! an electron with spins in

the p-orbital on thei th carbon,r̂ i is the charge operator o
thei th carbon,r̂ i 5 12 ai ,a

† ai ,a 2 ai ,b
† ai ,b , andr i , j is the dis-

tance between carbonsi and j . For the one electron terms
a j ,i
sol, we use nearest-neighbor transfer integrals ofb1

sol

5 22.228 eV for single bonds andb2
sol522.581 eV for

double bonds. Both the electron–electron and nucle
nuclear repulsions are described with the Ohno potentia

U~r !5
14.397 eV A

AS 14.397 eVA

U
D 21r 2

, ~3!

whereU is the Hubbard parameter.I andU are chosen such
that application of the Hamiltonian to a single carbon at
yields the ionization potential and electron affinity of ansp2

hybridized carbon;I is set equal to the ionization potential o
ansp2 hybridized carbon, 11.16 eV, andU is set equal to the
difference between the ionization potential and electron
finity of an sp2 hybridized carbon,U511.13 eV.27

The solvent is described using Hu¨ckel theory,

Hsolv5 (
I ,J,s

aJ,I
solvaJ,s

† aI ,s , ~4!

with aJ,I
solv being nearest-neighbor transfer integrals cho

such that~b1
solv1b2

solv!/2522.4045 eV, as in the PPP mode
and

FIG. 1. Chemical structure of the system used to study the effects of in
chain interactions on the exciton binding energy. Both the solute and so
chain lengths are varied in the calculations.
J. Chem. Phys., Vol. 106,
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solvu5Eg
solv/2, ~5!

whereEg
solv is the optical gap of the solvent~1.8 eV in all

studies except those of Fig. 12!. Hückel theory is used for the
solvent because it greatly simplifies the Hamiltonian mat
elements in the electronic–polaron model of Sec. IV E~see
the Appendix!, and because it should provide a reasona
description of the linear response of the solvent chain. U
like dielectric continuum models, which implicitly assume
solvent made up of point dipoles, Hu¨ckel theory captures the
delocalized electronic structure of the solvent. Hu¨ckel theory
also contains the correct time scale for the dielectric
sponse, an issue of importance in the electronic–pola
model of Sec. IV E. This time scale is set by the optical g
and the Hu¨ckel parameters are chosen to yield the expe
mentally observed optical gap, Eq.~5!.

The solute and solvent interact through Coulomb int
actions,

Hsol–solv5(
I ,i

U~r I ,i !r̂ I r̂ i , ~6!

wherei is summed over solute atoms andI is summed over
solvent atoms.

III. EXCITON BINDING ENERGY ON AN ISOLATED
POLYMER CHAIN

It is useful to separate the calculation of the excit
binding energy into two parts; the exciton binding energy
a hypothetical isolated chain, and the effects of interch
interactions on this binding energy. This section first calc
lates the exciton binding energy of a single polyacetyle
chain using the PPP Hamiltonian and S-CI~configuration
interaction with single electron–hole pair excitation!
theory,28–30,17–19since this is the approach that is used
describe the solute in Sec. IV. We then consider semiem
ical models that include both sigma and pi electrons. Th
allow us to compare the theoretical predictions to expe
ments on carbon chains with both even and odd number
carbon atoms, and to include the soliton formation energ

In Sec. IV, the PPP Hamiltonian for the solute chain, E
~2!, is solved using S-CI theory in a local orbital basis. T
local orbitals are obtained from the canonical Hartree–F
orbitals using the localization method of Ohmineet al.,21 and
consist of one occupied ‘‘valence-band’’ orbital and one u
occupied ‘‘conduction-band’’ orbital centered on each u
cell, or carbon–carbon double bond. In S-CI theory,28 the
ground state remains the Hartree–Fock ground state and
excited states are determined variationally using the t
form,

C isolated neutral5(
a,r

ca
r ca

r , ~7!

whereca
r has a hole in the valence-band orbital centered

the ath unit cell and an electron in the conduction-band
bital centered on ther th unit cell. The summation is over a
positions of the electron and hole. With the parameters

r-
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4218 Moore, Gherman, and Yaron: Exciton binding energies in conjugated polymers
Sec. II, the 11Bu optical gap state contains a tightly-boun
electron–hole pair, and free electron–hole pair states b
at the Hartree–Fock band gap.30,18

Rather than use S-CI theory to generate free electr
hole pair states, we consider a single hole~a cationic poly-
ene! and a single electron~an anionic polyene!. The cationic
polyene is described with the variational trial form,

C isolated cation5(
a

caca , ~8!

whereca has a hole in the valence-band orbital centered
the ath unit cell. An analogous form is used for the anio
Using Eq.~8!, the energy of the cation relative to that of th
neutral polyene is given by the energy of the highe
occupied-molecular-orbital~HOMO!; thus this procedure
yields the Koopman’s theorem ionization potential~IP!.28

Similarly, the anion’s energy is given by that of the lowe
unoccupied-molecular-orbital~LUMO!, and this procedure
yields the Koopman’s theorem electron affinity~EA!. The
energy required to create a free electron–hole pair on a
chain is then taken as the polymeric limit of IP–EA. Th
resulting IP–EA is the difference between the Hartree–F
HOMO and LUMO orbital energies. This approach is th
equivalent to S-CI theory in the long-chain limit, where fr
electron–hole pair states begin at the Hartree–Fock b
gap.

The PPP Koopman’s theorem IP’s and EA’s are sho
in Figs. 2 and 3. The long-chain limit of IP–EA is about 6
eV. Since the 11Bu optical gap obtained from S-CI theory
2.5 eV,30,31 this corresponds to an exciton binding energy
about 4.4 eV. Note that the exciton binding energy is
primarily by the electron–electron interaction potenti

FIG. 2. Ionization potentials of polyenes, C2nH2n12, calculated using the
PPP and MNDO Hamiltonians~Ref. 35!. Koopman’s theorem results ar
shown, along with results obtained by comparing the Hartree–Fock ene
of the neutrals and ions. Experimental values are from Ref. 26.
J. Chem. Phys., Vol. 106,
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U(r ) of Eq. ~3!. @While I of Eq. ~2! displaces the calculate
IP and EA, it has no effect on either the predicted 11Bu

optical gap or on IP–EA.# The Ohno potential value forU,
11.13 eV, is based on the ionization potential and elect
affinity of an sp2 hybridized carbon.27 This is not unique to
pi electron theory. Other semiempirical Hamiltonians, su
as ZINDO,22 MNDO,23 and AM1,32 also use properties o
the isolated atoms to parametrize the electron–electron in
actions. It is worth noting that the Ohno potential gives re
sonable agreement with the experimental energy of the 21Ag

state of polyenes, a quantity that is very sensitive to
strength of electron–electron interactions.21,33,34

To allow comparison with experimental IP’s and EA
of polyenes with both even and odd numbers of carbon
oms, and to allow inclusion of soliton formation energies,
also consider MNDO~Ref. 23! calculations in Figs. 2–4.35

The MNDO Koopman’s theorem IP–EA is about 7.0 e
similar to the 6.9 eV of PPP theory. The points labeled v
tical IP and EA refer to calculations in which the Hartree
Fock orbitals of the cation and anion are allowed to re
after addition or removal of the electron. Orbital relaxati
lowers IP–EA of chains with an even number of carb
atoms to about 6.2 eV. Inclusion of geometric relaxation
the cation and anion, as in the adiabatic IP and EA of Fig
and 3, lowers IP–EA of even carbon chains to 5.6 eV.

In the calculations of Fig. 4, the soliton formation ener
is included by considering the process

2C2nH2n12→C2n21H2n11
111C2n11H2n13

21, ~9!

wheren is an integer and the molecules are noninteracti
Charged chains with an odd number of carbon atoms

ies
FIG. 3. Electron affinities of polyenes, C2nH2n12, calculated as in Fig. 2.
Due to the minimal basis nature of the calculation, negative values for
electron affinity are obtained for small polyenes. These negative values
shown only to illustrate the chain-length dependence of the calculated e
tron affinity. Experimental values are from Ref. 26.
No. 10, 8 March 1997
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4219Moore, Gherman, and Yaron: Exciton binding energies in conjugated polymers
used since such chains can support a single charged so
In the long chain limit,n→`, the energy of the above reac
tion is equal to the energy required to create a well-separ
positive and negative soliton on a single chain, 4.7 eV for
MNDO results of Fig. 4. Similar results are obtained with t
MINDO ~4.4 eV!, AM1 ~4.5 eV! and PM3 ~4.7 eV!
Hamiltonians.35 This is much larger than the observe
threshold for charged soliton production in polyacetyle
which is very near the optical gap of around 1.8 eV.6–8

Similar results are obtained from S-CI theory on oth
polymers and using other semiempirical Hamiltonians. F
instance in PPV, S-CI solution of the PPP Hamiltonian w
Ohno parameterization yields an exciton binding energy
about 3 eV,14 and S-CI/INDO calculations yield an excito
binding energy of about 2.75 eV.36

Since semiempirical calculations that include orbital
laxation give good agreement with the ionization poten
and electron affinity of short polyenes,26 the calculations of
Figs. 2–4 may be viewed as using semiempirical Hartre
Fock theory to extrapolate from experimental results on sh
polyenes to the long-chain limit. There is a potential probl
with this extrapolation procedure. Suhai37,38 and Liegener39

find that when dynamic correlation is included in sing
chain calculations, an on-chain polarization cloud is form
around the charges and this significantly lowers the exc
binding energy. This effect of dynamic correlation may b
come increasingly important on longer chains, and its
sence from the calculations of Figs. 2–4 may mean that
long-chain limits of IP and EA are not reliable. We comme
on this further in Sec. V. The remainder of this paper focu
on another factor that likely plays a central role in establi
ing the exciton binding energy—dielectric interactions b
tween chains.

FIG. 4. Heats of formation of polyenes, C2nH2n12, obtained using the
MNDO Hamiltonian~Ref. 35!. The charged polyenes shown here have
odd number of carbon atoms, since these can support a single charged
ton. As discussed below Eq.~9!, comparison of these results yields a pr
diction of 4.7 eV for the energy required to create a well-separated pos
and negative soliton on an isolated chain of polyacetylene.
J. Chem. Phys., Vol. 106,
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IV. EFFECT OF INTERCHAIN INTERACTIONS

Dielectric interactions with surrounding chains lower t
exciton binding energy because the solvation energy of
free electron–hole pair is greater than that of the excit
The calculations presented here compare the solvation
ergy of a single electron~a polyene anion! and hole~a poly-
ene cation! to that of the exciton. Due to particle–hole sym
metry in Eq.~1!, the solvation energy of the anion is equal
that of the cation, and only that of the cation is report
below.

A. Description of solvent polarization

The polarization induced in the solvent by astatic
charge distribution on the solute is obtained from the follo
ing Hamiltonian:

H85Hsolv1(
I ,i

G I ,i r̂ I^r̂ i&, ~10!

whereHsolv is the Hückel Hamiltonian of Eq.~4!, and the
second term is similar to Eq.~6! but with ^r̂ i& the static
charge on thei th solute atom. The solvation energy is th
difference in energy between the ground state of the isola
solvent chain, as described byHsolv, and the ground state
of H8.

To describe the polarization induced by a dynamic sol
charge distribution, the electronic–polaron model of S
IV E uses a basis set for the solvent polarization. Here,
introduce this basis and test it by calculating the solvat
energy of various static charge distributions.

The solvent basis functions areF0, the unpolarized sol-
vent, andFa and Fa

r , the solvent as polarized by variou
positions of the electron and hole on the solute.F0 is the
ground state of the isolated solvent, as described byHsolv of
Eq. ~4!. Fa is the ground state of the solvent in the presen
of a hole on theath unit cell of the solute. More precisely
Fa is the ground state ofH8 in Eq. ~10!, with ^r̂ i&
5z^caur̂ i uca&, whereca is the wave function of a solute
with a hole on theath unit cell, see Eq.~8!. The magnitude
of the solute charge distribution is multiplied by a consta
scaling factor,z, for reasons to be discussed below.Fa

r is the
polarization induced in the solvent by a hole on theath unit
cell and an electron on ther th unit cell of the solute. More
precisely,Fa

r is the ground state ofH8 in Eq. ~10!, with
^r̂ i&5z^ca

r ur̂ i uca
r &, whereca

r is the solute wave function o
Eq. ~7!. When calculating the polarization induced by a po
ene cation, the solvent basis set is,

Csolvent5c0F01 (
a51

N

caFa , ~11!

whereN is the number of unit cells on the solute. Whe
calculating the polarization induced by the exciton state,
solvent basis set is,

Csolvent5c0F01 (
a,r51

N

ca
r Fa

r . ~12!

oli-

e
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4220 Moore, Gherman, and Yaron: Exciton binding energies in conjugated polymers
Note that the solvent basis functions,F0, Fa , andFa
r are

normalized but not orthogonal.
The basis sets of Eqs.~11! and ~12! will be used to

describe the polarization induced by an exciton or a h
delocalized over a polymer. These charge distributions
much more diffuse than the charge distributions ofca or ca

r ,
which describe holes and electrons localized at specific
sitions on the solute. Thus in generatingFa and Fa

r , the
solute charge distribution is multiplied by the scaling para
eter, z,1. This is also useful because the localized cha
distributions ofca or ca

r can induce charge separation in t
solvent. We will show below that the basis set performs b
whenz is chosen such thatFa andFa

r are not in the charge
separated regime.

The circles in Fig. 5 show the solvation energy of t
charge distribution corresponding to a hole on the first u
cell of a 9 unit cell solute, multiplied by the scaling factorz.
For a linear solvent response, the solvation energy is pro
tional to z2, and it is this proportionality constant that
shown in the figure. The response is approximately linear
scaling factors,z, below some critical value, beyond whic
the solvation energy becomes large and nonlinear. This n
linearity is due to ‘‘dielectric breakdown’’ in the solven
chain and the formation of a charge-separated ground s
~Formation of the charge-separated state is analogous
transition to a cyanine electronic structure, although in
current calculations, the geometry is fixed at the polye
structure.! This transition occurs when the energy required
form a charge-separated solvent state is offset by the

FIG. 5. Solvation energy of static charge distributions calculated by di
solution of the Hamiltonian in Eq.~10!. Results labeledca51 are for the
charge distribution arising from a hole on the first unit cell of a solute w
9 unit cells.c a51

r59 refers to a hole on the first unit cell and an electron on
9th unit cell of a solute with 9 unit cells. The charge distributions a
multiplied by a scaling factor,z. For a linear solvent response, the solvati
energy should be proportional toz2. The rapid increase beyond a critica
value ofz is due to the formation of a charge-separated ground state on
solvent chain.
J. Chem. Phys., Vol. 106,
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hanced Coulomb interaction with the solute charge distri
tion. There is some critical value for the magnitude of t
solute charge distribution,z of Fig. 5, at which this occurs
Since the Coulomb interaction energy between the solute
the charge-separated solvent initially increases with solv
chain length, charge separation occurs more easily, i.e
smaller values ofz, on long solvent chains. The squares
Fig. 5 show the solvation energy of the charge distribut
corresponding to a hole on the first unit cell and an elect
on the ninth unit cell of a 9 unit cell solute, multiplied byz.
With this solute charge distribution, charge separation occ
on the solvent chain whenz.0.5.

The formation of this charge-separated state is not
itself, of interest to the current study. While highly-localize
charge distributions may be able to induce charge separa
in a nearby chain, such charge distributions are not a focu
this paper.40 The basis functionsFa andFa

r do describe the
polarization induced by localized charges; however, the b
set is used to describe the polarization induced by m
more diffuse charge distributions, namely, those arising fr
a hole or exciton delocalized over a long polyene chain.
will see below that the solvent basis performs best whenz is
chosen such thatFa andFa

r are not in the charge-separate
regime.

We will test two separate aspects of the solvent ba
The first is the ability of a linear combination of an unpola
ized and polarized basis function to describe the polariza
induced by a charge distribution with identical spatial dist
bution but different magnitude. Consider the polarization
duced by a point charge located at the center of the so
chain in Fig. 1. We defineFq as the solvent wave function in
the presence of a point charge of magnitudeq, calculated
from Eq. ~10!. A basis for the polarization induced by a
arbitrary point charge,q8, is then constructed from the un
polarized solventF0 and the polarized solventFq ,

Csolvent5c0F01c1Fq . ~13!

The linear variational coefficients,c0 andc1, are determined
from the lowest-energy eigenvector of the Hamiltonian,H8
of Eq. ~10!, in the basis@F0,Fq#. The matrix elements are
determined as described in the Appendix. Figure 6 compa
the solvation energy obtained from the above basis set to
obtained from explicit solutions ofH8. Since the energy of
the polarized solvent is calculated variationally, a better ba
set gives a lower energy for the polarized solvent and thu
larger solvation energy. The basis@F0,F0.2# gives the solva-
tion energy of a charge with magnitude betweenq850.0 and
0.4 with an accuracy of better than 0.75%, equivalent to
magnitude of the nonlinearity in the exact response over
range. Similarly, the basis@F0,F0.4# gives the solvation en-
ergy of a charge with magnitude between 0.0 and 0.8 to
accuracy of better than 4%, which is once again equivalen
the magnitude of the nonlinearity in the exact response o
this range. A unit point charge is sufficient to induc
charge-separation in the solvent, as indicated by the ra
increase in the exact solvation energy forq8.0.9. F1 then
describes a charge-separated solvent, and Fig. 6 indic

ct

he
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4221Moore, Gherman, and Yaron: Exciton binding energies in conjugated polymers
that the basis@F0,F1# does not provide a good description
the solvent polarization in the noncharge-separated regim

Next, we test the ability of the basis of Eq.~11!, con-
structed from the polarization induced by localized cha
distributions, to describe the polarization induced by a d
fuse charge distribution. Consider the delocalized charge
tribution of an isolated cationic polyene, as described by
~8!. The exact solvation energy of this charge distribution
a solvent chain with 40 unit cells, obtained from direct so
tion of H8 in Eq. ~10!, is shown as the thick solid line in th
upper panel of Fig. 7. Note that the localized charge dis
bution of a solute cation with 1 or 2 unit cells induces cha
separation in the solvent chain and this leads to an ano
lously large solvation energy. Also shown in Fig. 7 are t
solvation energies obtained from diagonalizingH8 of Eq.
~10! in the basis of Eq.~11!. With z51, the solvent basis
functionsFa are in the charge-separated regime~see Fig. 5!,
and the basis gives a poor description of the polariza
induced by the diffuse charge distribution of a polyene cat
with three or more unit cells. Withz50.2 and a solute chain
length of greater than three unit cells, the error introduced
using the basis of Eq.~11! is less than 10%. Forz50.6, the
error drops to under 5%. Note also that the use of the solv
basis suppresses charge-separation in the solvent chai
evidenced by the absence of an enhanced solvation ener
short chain lengths in Fig. 7.

B. Relevant time scales

A simple approach to the inclusion of Coulomb scree
ing in solid-state calculations is to adjust the single-ch
electron–electron interaction potential,U(r ) of Eq. ~3!.
Rather substantial changes inU(r ) are needed to obtain
agreement with solid-state experiments. For instance, to

FIG. 6. The solvation energy of a point charge with magnitudeq8 located at
the center of the solute chain in Fig. 1. The ‘‘exact’’ result is obtained fr
direct solution of Eq.~10!. Also shown are results obtained with a basis
consisting of two basis functions; the unpolarized solvent and the solve
polarized by a charge with magnitudeq @see Eq.~13!#. Since the energy of
the polarized solvent is calculated variationally, a better basis set will gi
larger solvation energy.
J. Chem. Phys., Vol. 106,
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tain an exciton binding energy of 0.5 eV in polydiacetylen
Abe and co-workers19 lowered the Hubbard parameter,U,
from 11 eV to about 5 eV and used a dielectric constant
greater than 5 for the long-range Coulomb interaction. If
assume that the Ohno parametrization, Eq.~3! with U511.13
eV, is appropriate for isolated molecules and that interacti
between chains can be incorporated by modifyingU(r ), a
number of physically unreasonable predictions result. For
stance, since the ground state energy includes Coulomb
teractions between all pairs of electrons, loweringU by a
few eV lowers the ground state energy by many eV’s p
p-electron. This reduction in ground-state energy cor
sponds to an unphysically large solid-state cohesion ene
Solid-state cohesion arises from dispersion forces and in
actions between permanent moments, neither of which
well modeled by changingU(r ).

Including Coulomb screening from adjacent chains
modifying U(r ) could be rationalized if the motion of elec
trons on the solvent chains was much faster than that on
solute chain. If this were true, then the polarization of t
solvent chains would be set by the instantaneous charge
tribution on the solute, thereby screening the electro
electron interaction. However, it is unlikely that such a se
ration of time scales is valid.

t
as

a

FIG. 7. The upper panel shows the solvation energy of the static ch
distribution corresponding to positively charged polyenes of various leng
The ‘‘exact’’ result is obtained from direct solution of Eq.~10!. Also shown
are results obtained with the basis set of Eq.~11!. The lower panel shows the
disagreement between the basis set results and the ‘‘exact’’ results. S
the energy of the polarized solvent is calculated variationally, a better b
set will give a larger solvation energy.
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4222 Moore, Gherman, and Yaron: Exciton binding energies in conjugated polymers
Rather than modify electron–electron interactions,
methods developed below consider how interchain inte
tions modify the electron–hole interactions present in
excited states. In this case, the relevant time scales are t
of the solvent polarization as compared to electron–hole
tion. The time scale of the solvent polarization is invers
proportional to the optical gap of about 2 eV. The time sc
for electron–hole motion in the exciton is inversely propo
tional to the exciton binding energy.~A nonstationary state
prepared with a dipole moment pointing to the left will o
cillate to the right on this time scale.! When the exciton
binding energy is only a few percent of the band gap, as
many inorganic semiconductors,41 the electron–hole motion
is orders of magnitude slower than the solvent polarizati
In such systems, the polarization of the surroundings
follow the motion of the electron and hole and thus
screened electron–hole interaction potential is used in W
nier exciton theory.41 But in polymers, the exciton binding
energies may be greater than 2.5 eV for an isolated ch
~Sec. III! and 0.5 eV or larger in the solid state.3–5,13 A
separation of time scales is then not apparent.~The time
scale of electron–hole motion in the 11Bu state of polyacety-
lene is set by the exciton binding energy on an undistor
chain. That photoexcitation leads to charged soli
production6–8 does not imply this binding energy is zero, b
only that it is less than the energy to be gained by char
soliton production, i.e., it must be less than twice the bind
energy of a charged soliton. The soliton binding energy
been estimated as 0.15 eV from experiment.8 In Sec. III, the
MNDO energy predicted for formation of a free electron
hole pair on an isolated chain is about 6.2 eV if solit
formation is ignored, and about 4.7 eV if soliton formation
included, implying a large soliton binding energy of abo
0.75 eV.!

A model that includes the time scale of both t
electron–hole motion and the dielectric response is de
oped in Sec. IV E; but first, we consider two limiting case

C. Simplified reaction-field model

The reaction-field model assumes the dielectric respo
of the solvent is much slower than the charge fluctuati
arising from electron–hole motion on the solute. In t
implementation used here, the electron and hole on the so
are first delocalized as in Eqs.~7! and ~8!, and the averaged
charge distribution is then solvated. This differs from t
self-consistent reaction-field~SCRF! model,42,43 which al-
lows interaction with the solvent to alter the solute cha
distribution. Since the systems studied here do not hav
permanent dipole moment, our model should not differ s
nificantly from the SCRF model. An important exception
when solvation effects are sufficiently strong that the SC
model favors symmetry-breaking on the solute chain.
instance, in the case of a charged polyene, the SCRF m
may favor the localization of charge on some portion of
chain. This charge localization is not allowed in the reactio
field model used here, which assumes the solute charge
tribution is that of the isolated solute polyene.
J. Chem. Phys., Vol. 106,
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The solvation energy is calculated by diagonalizingH8
of Eq. ~10! in the basis set of Eq.~11!. The basis set is
constructed withz50.5. ~Results for otherz are shown in
Fig. 7.! As discussed at the end of Sec. IV A, the use of
basis suppresses the tendency of a localized charge dist
tion, such as that of a short polyene cation, to induced cha
separation in the solvent chain.

The solvation energies due to interaction with a solv
chain with 40 unit cells are shown as the circles in Figs
and 9. The exciton state, Fig. 9, has no solvation energ
this model since the expectation values,^r̂ i& of Eq ~10!, are
all zero. These results are discussed further in Sec. V.

D. Screened electron–hole interaction model

This limit is that of Wannier exciton theory,41 where the
dielectric response of the solvent is assumed to be m
faster than the charge fluctuations arising from electron–h
motion on the solute. The solvent polarization is then set
the instantaneous position of the electron and hole, leadin
dielectric screening of the electron–hole interaction. T
model is implemented by starting with the matrix represe
tation of the solute Hamiltonian,Hsol of Eq. ~2!, in the solute
basis,ca or ca

r of Eqs.~8! and ~7!. The solvation energy of
the charge distributions corresponding toca or ca

r are then
calculated using the basis sets of Eqs.~11! or ~12!, and added
to the diagonal of the Hamiltonian matrix. The resulting m
trix is then diagonalized. Note that, as discussed at the en
Sec. IV A, the use of the basis set suppresses the tenden
the localized charge distribution ofca or ca

r to induce charge
separation in the solvent. The calculated solvation ener
are shown as the squares in Figs. 8 and 9.

FIG. 8. Solvation energy of a polyene cation due to interaction with
solvent chain with 40 unit cells. The reaction-field, screenede–h and
electronic–polaron models are described in Secs. IV C, IV D, and IV
respectively. All solvation energies are calculated using the solvent bas
Eq. ~11!, constructed using a scaling factor,z50.5.
No. 10, 8 March 1997
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4223Moore, Gherman, and Yaron: Exciton binding energies in conjugated polymers
E. Electronic–polaron model

In this model, the Hamiltonian of Eq.~1! is diagonalized
in a direct-product basis of solute and solvent function44

The solute basis functions are theca andca
r of Eqs.~8! and

~7!. The solvent basis functions are theFa andFa
r of Eqs.

~11! and ~12!. Since the full Hamiltonian is used and th
matrix elements are evaluated exactly~see the Appendix!, no
assumptions are made about the relative time scale
electron–hole motion as compared to solvent polarizatio

For the exciton calculation, the size of the comple
direct-product basis scales asN4, N being the number of uni
cells on the solute. To avoid this rapid increase in the size
the basis with solute chain length, the following variation
form is used for the combined solute–solvent wa
function:45

C5(
a,r

ca
r S dar F01 (

a8,r 8
ca,a8
r ,r 8 Fa8

r 8 D H ua82au<mlag

ur 82r u<mlag
.

~14!

A similar basis may be constructed for the cation. Asmlag is
increased, this basis approaches the full direct-product b
Whenmlag50, each solute functionca

r is paired with the
corresponding solvent polarizationFa

r ; the spatial distribu-
tion of the solvent polarization is thereby constrained to f
low the motion of the electron and hole on the solute, and
variational procedure adjusts only the magnitude of the
larization by changing the ratio of thec andd coefficients.
With mlag.0, the solvent polarization may lag behind th
motion of the electron and hole, and the variational pro
dure has more flexibility in determining the spatial distrib
tion of the polarization.

Figures 10 and 11 show the solvation energy as a fu

FIG. 9. Solvation energy of the exciton state, due to interaction wit
solvent chain with 40 unit cells. All solvation energies are calculated us
the solvent basis of Eq.~12! with z50.5. Notation is as in Fig. 8.
J. Chem. Phys., Vol. 106,
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FIG. 10. The solvation energy of a polyene cation with 9 unit cells, cal
lated using the electronic–polaron model of Sec. IV E. The calculation u
the basis set of Eq.~11!, with various values for the scaling parameterz.
Since the energy of the polarized solvent is calculated variationally, a b
basis set will give a larger solvation energy. Comparison with Fig. 5 sho
that the basis fails whenz is such that the basis functions,Fa , are charge
separated.

FIG. 11. The solvation energy of the exciton state of a polyene with 9 u
cells, calculated using the electronic–polaron model of Sec. IV E. The
culation uses the basis set of Eq.~12!, with various values for the scaling
parameterz. Since the energy of the polarized solvent is calculated va
tionally, a better basis set will give a larger solvation energy. Compari
with Fig. 5 shows that more rapid convergence withmlag is obtained whenz
is such that the basis functionsFa

r are not charge separated.
No. 10, 8 March 1997
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4224 Moore, Gherman, and Yaron: Exciton binding energies in conjugated polymers
tion of the scaling factor,z, used in constructing the solven
basis. The solute chain has 9 unit cells and the solvent c
has 12, 30 or 40 unit cells. The calculated solvation energ
relatively insensitive to the value ofz, providedz is suffi-
ciently small that the basis functionsFa or Fa

r are not in the
charge-separated regime. Figure 5 shows that charge se
tion inFa of a 40-unit-cell solvent chain occurs whenz.0.9,
and Fig. 10 shows that above this point, the basis give
poor description of the solvent polarization.~The procedure
is variational in the sense that a better basis set will giv
larger solvation energy.! Figure 5 shows that charge separ
tion inFa

r of a 40-unit-cell solvent chain occurs whenz.0.6,
and Fig. 11 shows that this leads to slower convergence
respect tomlag.

Figures 10 and 11 also indicate that the solvation ene
is saturated by a solvent chain length of 40 unit cells.

The dependence of the solvation energy on solute ch
length is shown in Figs. 8 and 9. The scaling factor,z, is
fixed at 0.5. The solvation energies from the electron
polaron model are intermediate between those of
screened electron–hole interaction model and the reac
field model. This indicates that the time scale for electro
hole motion is comparable to that of the solvent polarizat
and a separation of time scales is not valid.

Changing the optical gap of the solvent,Eg
solv of Eq. ~5!,

changes the time scale of the solvent polarization. Figure

FIG. 12. Comparison of the solvation energies predicted by vari
electron–hole screening models, as a function of the band gap of the
vent. The solute polyene has 9 unit cells, and the solvent polyene has 40
cells. The plotted quantity,Erelative of Eq. ~15!, is 1 when the electronic–
polaron model agrees with the screened electron–hole potential model,
expected when the band gap is large and the solvent polarization is
Erelative equals 0 when the electronic–polaron model agrees with
reaction-field model, as is expected when the band gap is small and
solvent polarization is slow. The solvent basis is constructed using a sc
factor z50.3.
J. Chem. Phys., Vol. 106,
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shows the solvation energy for a 9 unit cell solute and a 40
unit cell solvent, as a function of the optical gap,Eg

solv. The
quantity shown is

Erelative5
Eelectronic–polaron2Ereaction-field

Escreenede–h2Ereaction-field
, ~15!

whereEelectronic–polaron, Ereaction-field, andEscreenede–h are the
solvation energies obtained from the electronic–polar
reaction-field, and screened electron–hole interaction m
els, respectively. WhenErelative51, the electronic–polaron
model agrees with the screened electron–hole interac
model, and whenErelative50, the electronic–polaron mode
agrees with the reaction-field model. Since charge separa
occurs more easily when the solvent band gap is reduce
scaling factor ofz50.3 is used to insure that the solve
basis functions are not in the charge-separated regime.

V. DISCUSSION

This paper considers separately, the exciton binding
ergy of a hypothetical isolated chain of polyacetylene, a
the effects of interchain interactions on this binding ener
Figures 2–4 use semiempirical quantum chemistry to pre
the exciton binding energy of an isolated chain. Since
predictions agree with experiments on short chains, this
proach may be viewed as using semiempirical Hartree–F
theory to extrapolate from molecular data to the polyme
limit. The energy predicted for formation of a free electron
hole pair on an isolated chain of polyacetylene is 6.2 eV
soliton formation is ignored, and about 4.7 eV if soliton fo
mation is included. This is much larger than the observ
threshold for charged soliton production in polyacetylen
which is near the optical gap of about 1.8 eV.6–8

Interactions with adjacent chains lower the exciton bin
ing energy since the solvation energy of the free electro
hole pair is larger than that of the exciton. The solvati
energies, calculated using a number of different models,
shown in Figs. 8 and 9. The solvent chain length is 40 u
cells, sufficient to saturate the calculated solvation energ
~see Figs. 10 and 11!. Due to particle–hole symmetry in Eq
~1!, the solvation energy of a polyene anion is equal to t
of the cation, and the solvation energy of a free electro
hole pair is twice that of the cation shown in Fig. 8.

The simplified reaction-field model of Sec. IV C a
sumes the solvent polarization is much slower than electro
hole motion on the solute. The solvent polarization is th
set by theaveragedcharge distribution of the solute. Within
this model, the exciton state is nonpolar and has zero so
tion energy~Fig. 9!. For the cation, as the solute chain leng
is increased, the solute charge distribution becomes incr
ingly diffuse and the solvation energy tends toward ze
~Fig. 8!. Soliton formation will localize the solute charg
distribution and lead to a finite solvation energy in the lon
chain limit. Given an estimated soliton size46,47 of 14 unit
cells,48,49a rough estimate for the solvation energy from th
model is that of an undistorted polyene cation with 14 u
cells, about 0.1 eV in Fig. 8.
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4225Moore, Gherman, and Yaron: Exciton binding energies in conjugated polymers
At the opposite extreme is the screened electron–h
interaction model of Sec. IV D, which assumes the solv
polarization is much faster than electron–hole motion. T
solvent polarization is then set by theinstantaneousposition
of the electron and hole, thus screening the electron–h
interaction. In this model, the solvation energy of the exci
is about 0.16 eV~Fig. 9!, and that of a well separated ele
tron and hole is twice that of the cation, about 0.68 eV~Fig.
8!. The exciton binding energy is then reduced by 0.52 e

The electronic–polaron model of Sec. IV E makes
assumptions about the relative time scale of electron–h
motion vs solvent polarization. Figures 8 and 9 show that
predicted solvation energies lie between those of
reaction-field and screened electron–hole interaction mod
This can be understood as follows. Formation of a polari
tion cloud around the electron and hole leads to a favora
electrostatic interaction between the solute and solv
chains; however, the resulting increase in the effective m
of the electron and hole lowers the delocalization ener
The electronic–polaron model includes these changes in
fective mass, since it calculates the matrix elements of
full Hamiltonian, Eq.~1!, between the basis functions of E
~14!. However, the increase in effective mass is ignored
the screened electron–hole interaction model, which mo
fies only the Coulomb interaction between the electron
hole. The screened electron–hole interaction model ther
overestimates the solvation energy of the exciton by 13
and of the cation by 35%, relative to the electronic–pola
model. Since the overestimation is larger for the exciton,
the screened electron–hole interaction model is valid
slow electron–hole motion, this suggests that electron–h
motion is faster in the exciton than in the cation or anion

The electronic–polaron model gives a solvation ene
of about 0.50 eV for a free electron–hole pair~twice that of
the cation in Fig. 8! and 0.07 eV for the exciton~Fig. 9!. The
predicted reduction of the exciton binding energy is th
about 0.43 eV, a relatively large number for interaction w
a single chain.

The time scale of the solvent polarization is set by
optical gap of the solvent chain. Figure 12 shows the rela
solvation energies for a range of solvent optical gaps. T
quantity shown, Erelative of Eq. ~15!, is 1 when the
electronic–polaron model agrees with the screened electr
hole interaction model and 0 when the electronic–pola
model agrees with the reaction-field model. The results
Fig. 12 show the expected trend. For large solvent opt
gaps, corresponding to a fast dielectric response, the so
tion energy tends towards the screened electron–hole in
action model. For small solvent optical gaps, correspond
to slow dielectric response, the solvation energy tends
wards the reaction-field model. However, it is not clear w
Erelative does not identically approach these limits. In t
screened electron–hole interaction model, the size of
electron and hole is set by the localized Hartree–Fock or
als obtained from calculations on an isolated chain~see Sec.
III !. That Erelative does not identically approach one in th
large band-gap limit may indicate that the localized Hartre
Fock orbitals are not the optimal choice for the form of t
J. Chem. Phys., Vol. 106,
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electron and hole in the large band-gap limit. In the sm
band-gap limit,Erelative for the exciton approaches somethin
near zero; however,Erelative for the cation-approaches 0.5
This may indicate that the charge on the cation self-tra
forming an electronic polaron with a bandwidth that goes
zero in the limit of an infinitely slow dielectric response. A
discussed in Sec. IV C, the reaction field model used h
assumes the solute charge distribution is that of the isola
solute, and thus does not allow the solvent to induce cha
localization on the solute.

To address the solid-state exciton binding energy, we
working on the following extensions to the model. First, t
number of solvent chains must be increased to allow extra
lation to the solid-state limit. On-chain polarization effec
also need to be included. In the electronic–polaron mo
introduced here, the electron and hole are dressed by
polarization of the solvent chain. In addition, the electr
and hole may be dressed by on-chain polarization, whic
ignored in Hartree–Fock and S-CI theory. Suhai37,38 and
Liegener39 find that on-chain polarization has a large effe
on the exciton binding energies calculated fromab initio
theory. In a semiempirical Hartree–Fock approach, the
rameterization to small molecules may partially include su
on-chain polarization effects. However, if the effects of o
chain polarization are chain-length dependent, the use
semiempirical Hartree–Fock theory to extrapolate from sh
to long chains, as in Figs. 2–4, may not be valid. Final
sigma electrons should be included in the solvent chain.
dition of sigma electrons to the solvent is not expected
greatly alter the polarizability along the chain, however,
will likely have large effects on the polarization perpendic
lar to the polymer axis. This is especially true for the pola
izability perpendicular to the plane of the polymer, which
zero in a pi-electron model.~This component of the polariz
ability does not contribute to the solvation energy in t
geometry of Fig. 1.!

The electronic–polaron model presented here finds
interaction with a single chain lowers the exciton bindi
energy by 0.43 eV. Given this large reduction from intera
tion with a single chain, these calculations strongly sugg
that interchain interactions play an important role in est
lishing the exciton binding energy. The calculations p
sented here also strongly suggest that interchain interact
are not well modeled by simply reparametrizing a sing
chain Hamiltonian to solid-state data. By developing an
plicit model of Coulomb screening, we hope to achieve
more realistic model of the photophysics of conjugated po
mers, with better transferability of parameters between po
mer systems, and with the ability to utilize detailed inform
tion available from both experimental studies andab initio
calculations on molecular systems to make predictions
solid state properties.
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APPENDIX: HAMILTONIAN MATRIX ELEMENTS

The matrix elements of the Hamiltonian, Eq.~1!, be-
tween the basis functions of Eq.~14! are

^cb
sFb8

s8 uHuca
r Fa8

r 8 &5^cb
suHsoluca

r &^Fb8
s8 uFa8

r 8 &

1da,bd r ,s^Fb8
s8 uHsolvuFa8

r 8 &

1(
i ,I

U~r I ,i !^Fb8
s8 ur̂ I uFa8

r 8 &

3^cb
sur̂ i uca

r &. ~A1!

The matrix elements between solute functions are the s
dard matrix elements of CI theory.28 The matrix elements
between solvent functions are calculated as follows.

Consider two single Slater determinant wave functio

such asFb8
s8 andFa8

r 8 of Eq. ~A1!, that describe the solvent i
the presence of two different solute charge distributions

Fb8
s85ā1

†ā2
† ...u0&; Fa8

r 85a1
†a2

† ...u0&, ~A2!

whereai
† creates an electron in spin–orbitalfi of Fa8

r 8 , and

āi
† creates an electron in spin–orbitalf̄ i of Fb8

s8 .
The overlap between the wave functions is

^Fb8
s8 uFa8

r 8 &5uSoccu, ~A3!

whereSocc is a matrix holding the overlaps between the o
cupied spin–orbitals,

Si , j
occ5^f̄ i uf j&; i , j51...Nocc, ~A4!

Nocc is the number of occupied spin–orbitals inFb8
s8 and

Fa8
r 8 , anduM u refers to the determinant of the matrixM .
The matrix elements of a one-electron operator can

obtained by first expanding the operator in the spin–orb

basis ofFa8
r 8 ,

Ô5(
i , j

Oi , jai
†aj , ~A5!

whereOi , j5^f i uÔuf j&. The matrix element of the operato
may now be written

^Fb8
s8 uÔuFa8

r 8 &5uSoccu(
a

Oa,a1(
a,r

Or ,auSa
r u, ~A6!

wherea is summed over the occupied spin–orbitals ofFa8
r 8

and r is summed over the unoccupied spin–orbitals

Fa8
r 8 . Sa

r is a matrix obtained fromSocc by replacing theath
column ofSocc as follows:

~Sa
r ! i , j5HSi , jocc ~ jÞa!

^f̄ i uf r& ~ j5a!
. ~A7!

An efficient computational evaluation of Eq.~A6! may
be achieved by writinguSoccu as

uSoccu5(
i
Si , j
occCi , j , ~A8!
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whereC is the matrix of cofactors ofSocc. The determinant
of Sa

r can then be obtained from,

uSa
r u5(

i
^f̄ i uf r&Ci ,a . ~A9!

The computationally expensive step of evaluating the cof
tor matrix,C, need be done only once for each set of fun

tions,Fa8
r 8 andFb8

s8 . We could not find a similar computa
tional simplification for a two-electron operator, and this
our primary motivation for using the Hu¨ckel Hamiltonian,
Eq. ~4!, to describe the solvent.

AssumingFa8
r 8 andFb8

s8 contain doubly occupied spatia
orbitals leads to further simplification, and Eq.~A6! becomes

^Fb8
s8 uÔuFa8

r 8 &52uSoccu2(
a

Oa,a12uSoccu(
a,r

Or ,auSa
r u,

~A10!

where the matrices and summations are as above, but wit
indices referring to spatial rather than spin–orbitals.
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