

Baseball Math

The CSU Sacramento's Hornet Baseball field is about 30-35 years old. The concept of a baseball field started around the 1800's. The original baseball field looked nothing like what it does today; many changes have taken place in the 19th century to get the field we use today.

Problem:

If you measure the length of one side of the green grass area where the pitcher's mound is, it is 90 feet long, what is the area of a grass diamond? The perimeter?

Area

- 1. Using the formula for area of a diamond, A=.5 $(d_1)(d_2)$, d_1 = the length from 2nd base to the catchers box, d_2 = the length from 1st base to 3rd base
- 2. What we know is that one side is 90ft and all the sides are the same.

3. By taking a triangle out of the shape of the diamond and dividing 90 by 2 we get 45ft. for the sides of a triangle.

- 4. Using the Pythagorean formula, $a^2+b^2=c^2$, we plug in the numbers, $45^2+45^2=c^2$
- 7. Plug in d_1 and d_2 into the area of a diamond equation, A=.5 $(d_1)(d_2)$, A=.5(127.28) (127.28) =8100.1ft.²
- 8. Just a note that another student did this problem and had gotten a different answer.

$$4050=c^2$$

$$\sqrt{4050} = \sqrt{c^2}$$

- 5. Now we know the hypotenuse of the triangle and can plug it back in to find d_1 and d_2 .
- 6. Take the number 63.64 and multiply it by 2, you get 127.28 ft. Now you have d_1 and d_2 .

Perimeter

- 1. Perimeter of the diamond is found by adding all sides together. We know that all sides are equal.
- 2. By substituting into P=x+x+x+x we get P=90+90+90+90=360 feet.
- 3. Other applications could be using angles, finding the distance of different parts of the field, and using other formulas

top picture

CSU Sacramento
Playing Field outline