Instructions: No graphing calculators are allowed on the exam. Show work as appropriate. There a 80 points possible on the exam.

1. The radius of a circle is measured to be 8 cm , with a measurement error of $\pm 0.05 \mathrm{~cm}$.
a. Use differentials to estimate the maximum error in the calculated area of the circle. Include units.

$$
\begin{aligned}
\text { Area } A & =\pi r^{2} \\
& d A=\left(\frac{d A}{d r}\right) d r=2 \pi r d r \\
\therefore \triangle A & \approx d A=2 \pi(8)(0.05)=0.8 \pi
\end{aligned}
$$

b. What is the relative error in the calculated area.

$$
\frac{d A}{A}=\frac{2 \pi r d r}{\pi r^{2}}=2 \frac{d r}{r}=2\left(\frac{0.05}{8}\right)=0.0125
$$

c. How accurately must the radius be measured for the percentage error in the estimated area to be less than 1% ?

$$
\begin{array}{r}
\frac{d A}{A} 100 \%=2\left(\frac{d r}{r}\right) 100 \%=1 \% \\
502\left(\frac{d r}{8}\right)=0.01 \\
2 r=0.04
\end{array}
$$

2. Show that $y=C e^{k t}$, where C and k are constants, satisfies the differential equation $\frac{d y}{d t}=k y$. (4 points)

$$
\frac{d y}{d t}=\frac{d}{d t} c e^{k t}=c e^{k t} \cdot k=k\left(c e^{k t}\right)=k y
$$

3. Find the derivatives of the following functions. Simplify.
a. $y=2 e^{-5 x}$

$$
y^{\prime}=2 e^{-5 x}(-5)=-10 e^{-5 x}
$$

b. $y=x^{3} e^{x}$

$$
\begin{aligned}
& y=x^{3} e^{x} \\
& y^{\prime}=3 x^{2} e^{x}+x^{3} e^{x}=x^{2} e^{x}(3+x)
\end{aligned}
$$

c. $y=\frac{3 x-2}{2 x+5}$

$$
\begin{aligned}
y^{\prime} & =\frac{(2 x+5)(3)-(3 x-2)(2)}{(2 x+5)^{2}} \\
& =\frac{(6 x+15)-(6 x-4)}{(2 x+5)^{2}}=\frac{19}{(2 x+5)^{2}}
\end{aligned}
$$

d. $y=\sin \left(\cos x^{3}\right)$

$$
\begin{aligned}
& y^{\prime}=\cos \left(\cos x^{3}\right)\left(-\sin x^{3}\right)\left(3 x^{2}\right) \\
& y^{\prime}=-3 x^{2}\left(\sin x^{3}\right) \cos \left(\cos x^{3}\right)
\end{aligned}
$$

e.

$$
\begin{aligned}
& y=\tan ^{-1}(\sin x) \\
& y^{\prime}=\frac{1}{1+\sin ^{2} x} \cdot \cos x=\frac{\cos x}{1+\sin ^{2} x}
\end{aligned}
$$

f.

$$
\begin{aligned}
& y=\ln \left(x^{2} \sqrt{e^{x}}\right)=\ln x^{2}+\ln e^{\frac{1}{2} x}=2 \ln x+\frac{1}{2} x \\
& y^{\prime}=\frac{2}{x}+\frac{1}{2}=\frac{4+x}{2 x}
\end{aligned}
$$

g. $y=\ln (\ln x)$

$$
\text { g. } y=\ln (\ln x), \frac{1}{\ln x} \cdot \frac{1}{x}=\frac{1}{x \ln x}
$$

h.

$$
\begin{aligned}
& y=x^{2 / 5}-\pi^{2} \\
& y^{\prime}=\frac{2}{5} x^{-3 / 5}
\end{aligned}
$$

4. Experiments show that if the chemical reaction $\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}$ takes place at $113^{\circ} \mathrm{F}$, th e of reaction of dinitrogen pentoxide is proportional to its concentration C as follows: $\frac{d C}{d t}=-0 . C \quad J 5 C$, where the time is measured in seconds.
(8 points)
a. Write the equation for the concentration C after t seconds if the initial concentration is C_{0}

$$
C=C_{0} e^{-0.0005 t}
$$

b. How long will it take to reduce the concentration to 90% of its initial value?

$$
\begin{aligned}
C_{0} e^{-0.0005 t} & =0.9 C_{0} \\
-0.0005 t & =\ln (0.9) \\
t & =-2000 \ln (0.9)
\end{aligned}
$$

5. For the curve curve $2 x y+\pi \sin y=2 \pi$,
a. Use implicit differentiation to find $\frac{d y}{d x}$

$$
\begin{aligned}
2 y+2 x y^{\prime}+\pi \operatorname{cod} y \cdot y^{\prime} & =0 \\
(2 x+\pi \cos y) y^{\prime} & =-2 y \\
y^{\prime} & =-\frac{2 y}{2 x+\pi \cos y}
\end{aligned}
$$

b. Verify that the point $\left(1, \frac{\pi}{2}\right)$ is on the curve.

$$
2(1)\left(\frac{\pi}{2}\right)+\pi \sin \left(\frac{\pi}{2}\right)=\pi+\pi=2 \pi
$$

Problem 5 continues on the next page

c. Find the equation of the line tangent to the curve at the point $\left(1, \frac{\pi}{2}\right)$.

$$
\begin{aligned}
& y^{\prime}=-\frac{2\left(\frac{\pi}{2}\right)}{2(1)+\pi \cos \left(\frac{\pi}{2}\right)}=-\frac{\pi}{2} \\
& 0 \quad y-\frac{\pi}{2}=-\frac{\pi}{2}(x-1) \quad \text { on } y=-\frac{\pi}{2} x+\pi
\end{aligned}
$$

6. A 13 - ft ladder is leaning against a wall when its base begins to slide away from the wall. When the base is 12 ft from the wall, the base is moving away from the wall at a rate of $5 \mathrm{ft} / \mathrm{s}$.
a. How fast is the top of the ladder sliding down the wall then? Include the appropriate units.

It x be the distance of the base of the ladder to the wall and y be the height of the top Sf the lender up the wall.

$$
\begin{aligned}
& x^{2}+y^{2}=13^{2} \\
& 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \\
& \frac{d y}{d t}=-\frac{x}{y} \frac{d x}{d t} \\
&=-\frac{12}{5} \cdot 5=-12 \mathrm{ft} / \mathrm{sec} \text { or } 12 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

b. How fast is the angle θ between the ladder and the floor changing then? Include the appropriate units.

From the picture in pant (a)

$$
\begin{aligned}
\cos \theta & =\frac{x}{13} \\
-\sin \theta \frac{d \theta}{d t} & =\frac{1}{13} \frac{d x}{d t} \\
\frac{d \theta}{d t} & =-\frac{1}{13 \sin \theta} \frac{d x}{d t} \\
& =-\frac{1}{13\left(\frac{5}{13}\right)} \cdot 5=-1 \text { or } 1 \text { radian/see }
\end{aligned}
$$ problem indicates the answer should be positive, which is why I dropped the ($(\boldsymbol{)}$) sign in punts (a) (6)

7. The position function of a particle is given by $s(t)=t^{3}-6 t^{2}+9 t+12 \quad 0 \leq t \leq 3$, where s is in r . s and t is in seconds.
(12 i .ts)
a. Find the velocity at time t.

$$
v(t)=s^{\prime}(t)=\sqrt{3 t^{2}-12 t+9 \mathrm{~m} / \mathrm{s}}
$$

b. When is the particle at rest?
$v(t)=3(t-1)(t-3)$
so $v(t)=0$ when $t=1$ or $t=3$ seconds
c. When is the particle moving in the positive direction?
$v(t)>0$ when $t<1$ or $t>3$, bat on our domain (see the question), $1 t(t)>0$ when

$$
0 \leq t<1
$$

d. Find the total distance the particle travels during the three seconds.

The particle changer direction at $t=1$, so total distance is given by $D=|S(3)-S(1)|+|S(1)-S(0)|$

$$
=4+4=8 \text { meter }
$$

e. Find the acceleration at time t.

$$
a(t)=v^{\prime}(t)=s^{\prime \prime}(t)=6 t-12 \mathrm{~m} / \mathrm{s}^{2}
$$

f. When is the particle speeding up?

The particle is speeding up when $v(t)$ and $a(t)$ have the same sigh. On our domain $(0 \leq t \leq 3)$ this only occurs for $1<t<2$ when both are negative.

