Physical and geochemical characteristics of the 2008 Sailor Bar gravel addition

Submitted to the US Bureau of Reclamation, Sacramento office

Submitted by:

Tim Horner Professor, CSUS Geology Department

With Assistance from:

Rich Redd, Mike D'Anna, Jay Heffernan, Rhianna Eads, Matt Power, Scott Paulinski, and Miguel Moreno

Table of Contents

Table of C	Contents		•				•							2
Introducti	on and Objectives				•					•	•	•		5
Backgrou	Background/Previous Work 6								6					
Methods:	Grain Size	•												7
	Gravel Mobility	-												7
	Water Quality .													9
	Hyporheic Pressur	e He	ead											13
	Water Depth/Velo	city												14
	Inter Gravel Veloc	ity												15
Results:	Before Gravel Add	litio	n G	rain	Siz	ze								17
	Before Gravel Add	litio	n W	ate	r Qı	ualit	y							19
	Before Gravel Add	litio	n H	уро	rhe	ic P	ress	ure	Hea	ıd				21
	Before Gravel Add	litio	n W	/ate	r De	epth	/ V	eloc	ity					22
	After Gravel Addi	tion	Gra	ain S	Size									23
	After Gravel Addi	tion	Wa	ter	Qua	lity								24
	After Gravel Addi	tion	Hy	porl	neic	Pre	ssu	re H	lead	l.				27
	After Gravel Addi	tion	Wa	ter	Dep	oth/V	Velo	ocity	1.					28
	After Gravel Addi	tion	Gra	avel	Mc	bili	ty							30
	After Gravel Addi	tion	Inte	er G	rav	el V	elo	city						32
Discussio	n													35
References														

List of Figures

Figure 1	Picture showing the two largest grain sizes in tracer rock study.	8
Figure 2	Arrows are pointing to yellow and blue tracer rocks	9
Figure 3	Picture of the mini piezometer tip	10
Figure 4	Picture of field setup for flow-through cell and water quality equipment	11
Figure 5	Picture of the manometer used for measuring the upwelling or downwelling	13
Figure 6	Picture showing the Price AA wading rod stream velocity measuring equipment	14
Figure 7	Picture showing the field set up of the permeability measurements	16
Figure 8	Map showing the downstream pebble count locations	18
Figure 9	Graph of cumulative frequency for downstream pebble counts	18
Figure 10	Before gravel addition map showing the gravel addition area	19
Figure 11	Before gravel addition map of study area showing dissolved oxygen	20
Figure 12	Before gravel addition upwelling/downwelling measurement	21
Figure 13	After gravel addition map of the pebble counts	23
Figure 14	Graph showing the cumulative frequency of each pebble count	24
Figure 15	After gravel addition map showing the gravel addition area. Points indicate mini piezometer locations	25
Figure 16	After gravel addition map of the study area dissolved oxygen	25
Figure 17	After gravel addition map showing upwelling/downwelling	28
Figure 18	After gravel addition map showing average surface water velocity .	30
Figure 19	After gravel addition map showing the tracer rock transect	31
Figure 20	After gravel addition map of the salt water tracer tests	32

List of Figures Cont'd

Figure 21	Electrical conductivity versus time graph of a salt water tracer test 1.	33
Figure 22	Electrical conductivity versus time graph of a salt water tracer test 2.	33
Figure 23	Electrical conductivity versus time graph of a salt water tracer test 3 .	34
Figure 24	Electrical conductivity versus time graph of a salt water tracer test 4.	34

List of Tables

Table 1	Before gravel addition mini piezometer data September, 2008		20
Table 2	Before gravel addition depth and velocity data		22
Table 3	After gravel addition mini piezometer water quality data .		26
Table 4	After gravel addition vertical gradient data		27
Table 5	After gravel addition depth and velocity data		29

Appendix

Appendix A	Before gravel addition downstream pebble counts	•	•	•	38
Appendix B	After gravel addition pebble counts				58
Appendix C	Before and after gravel addition HACH Chemistry				68
Appendix D	After gravel addition inter gravel velocity.				71

1.0 Introduction and Objectives

Results described in this report are a summary of data collected at the Sailor Bar gravel addition before and after restoration work was completed in September 2008. This work was funded by the U.S. Bureau of Reclamation (Sacramento Office), and is part of the overall Central Valley Project Improvement Act (CVPIA) objective to enhance spawning gravels on the American River.

Field work and analyses conducted during the 2008/2009 field season have six major objectives. These objectives were described as tasks in a gravel evaluation proposal submitted to the U.S. Bureau of Reclamation, Sacramento Office on June 18, 2008 and are summarized below:

- Grain size analysis; Wolman pebble counts
- Measure hyporheic field parameters (dissolved oxygen, pH, electrical conductivity, and temperature) from installed mini piezometers
- Measure upwelling vs. downwelling at each mini piezometer location
- Measure water depth and velocity at mini piezometer locations
- Conduct tracer rock studies in the gravel addition
- Conduct salt water tracer tests to measure spawning gravel permeability
- Create GIS maps of the study area with site and sample locations
- Compile a written report for the 2008/2009 season

2.0 Background/Previous Work

The Lower American River (LAR) is 23 miles of unobstructed channel that lie below Nimbus and Folsom Dams approximately 10 miles East of Sacramento, CA. The upper four miles of the river from Sailor Bar to Lower Sunrise produces approximately one third of the salmon in Northern California (IEP, 2008). This area has become the primary spawning ground due to the presence of Nimbus dam as a barrier the fish cannot overcome. The dams have caused the LAR to become sediment-starved due to a lack of annual gravel deposition from historical floods that no longer occur. This lack of sediment replenishment is causing the LAR to lose an average of 50,000 cubic feet per year of gravel (Fairman, 2007) that has not been naturally replaced. The lack of gravel is causing the river to incise from periodic large water releases from the dams, which in turn leads to armoring of the river bed. Salmonids are unable to spawn in many areas below the dam due to grain sizes that are large and cemented together with very fine-grained silt and clay sediment.

Declining salmon populations have caused significant effort to be made to evaluate and restore fish habitat quality (Snider et al., 1992; Merz and Vanicek, 1996; Snider and Vyverberg, 1996; Vyverberg et al., 1997; DFG Technical Report no. 01-2, Morita, 2005). Because of the problems, the Bureau of Reclamation funded a gravel addition in September 2008 across from the Nimbus Fish Hatchery at Sailor Bar. Prior to gravel addition, Sailor Bar was armored with coarse grains that made spawning difficult. The gravel added to the river allowed the salmonids to have nearly ideal spawning gravel. CSUS monitored the gravel addition site before and after restoration to evaluate the gravel addition based upon the previously stated study objectives.

6

3.0 Methods; Grain Analysis

Grain size was measured using the Wolman (1954) pebble count method, but also taking into account Kondolf's (1993) additional comments. Pebble counts were executed by taking a step forward and picking up the rock that is directly below the big toe portion of the field worker's foot. This ensures a random selection of rocks, with the first grain that is touched the grain to be measured. Grains that were selected were than measured with templates of pre-existing size classes from 7 inches in intermediate diameter to 5/16 of an inch diameter.

One hundred rocks were collected per pebble count and transects followed the Kondolf (1993) suggestion of diagonally crossing riffles in a v-shaped pattern. This method was used to collect the 20 pebble counts downstream of Sailor bar prior to gravel addition work. An additional 9 pebble counts were collected after the restoration was completed.

3.1 Gravel Mobility

Tracer rocks were deployed in transects across the restoration area (after gravel addition) to better understand the movements of discrete gravel sizes during varying flow conditions. Forty rocks of the three sizes of tracers rocks were used for each transect. The tracer rocks were placed in transects across the new gravel addition at upstream, mid gravel addition, and downstream locations. The largest rocks (2 ½-3 inch) were painted bright yellow, the medium size rocks (1 ¼ to 1 ¾ inch) were painted blue, and the smallest rocks (5/8- 7/8 inch) were painted red for obvious differentiation from the riverbed. The transect lines were mapped with high resolution GPS to within 50cm horizontal error. The tracer rocks were initially deployed at a flow of 800 cfs. Figures 1 and 2 show pictures of a grouping of the two largest grain sizes used in the tracer rock study.

Figure 1: Picture showing the two largest grain sizes used in the tracer rock study.

Figure 2: Arrows are pointing to yellow and blue tracer rocks.

3.2 Water Quality

Mini piezometers were installed throughout the gravel addition area before and after the restoration work was completed to measure changes in water chemistry, temperature, and the vertical pressure gradient. Mini piezometers were installed in August 2008 (before gravel addition) and January 2009 (after gravel addition). Mini piezometers were installed to a depth of 30 cm below the riverbed (ground surface) to create a well. Samples were collected using ¼ inch polyethylene tubing and special 3 cm long stainless steel drive point tips that form the mini piezometers. The mini piezometer tips have a 1cm long screen, that allows sampling from a discrete interval in the subsurface. These tubes were than capped with golf tees to ensure that river water did not mix with the water at the 30 cm depth. Mini piezometers were installed throughout the restoration site at upstream, mid gravel, and downstream locations. Several mini piezometers were installed outside of the restoration area at upstream locations to show natural river conditions and provide a control for the water quality measurements. This study design is known as a BACI study design, where sites are evaluated Before, After, Control, and Impact of the restoration area. Figure 3 shows the piezometer tip with polyethylene tubing.

Figure 3: Picture of the piezometer tip and ¹/₄ inch tubing used for mini piezometers. The mini piezometer is inside of the drive rod device used for mini piezometer installation.

During hyporheic sampling events, water was pumped from the piezometers into a sealed flow-through chamber where dissolved oxygen (DO), pH, electrical conductivity (EC), turbidity and temperature were measured. When measurements were made using the flow-through chamber, samples were monitored without any interaction with the atmosphere. Figure 4 shows the field setup of the pump and flow-through chamber with the meters used, and GPS. Dissolved oxygen concentrations are particularly susceptible to equilibration with the atmosphere, and care must be taken to ensure that results are as representative of the subsurface as possible. Instrument probes were inserted into each port of a flow-through sampling cell; an airtight seal was obtained by tightening a rubber gasket around the individual probes.

Figure 4: Picture of the field setup for the flow-through cell and water quality equipment.

A peristaltic pump was then used to pump water through the flow-through chamber from each of the mini-piezometers. Water was allowed to circulate through the chamber until each of the parameters had adequately stabilized, typically 3 to 5 minutes. Turbidity was measured with a hand-held DRT turbidity meter that uses back-scattered light to measure the turbidity. An Orion 210 pH meter, YSI 95 DO meter, and an Orion Model 128 Electrical Conductivity (EC) were calibrated within 30 minutes of data collection prior to each sampling event. Water samples were also collected and filtered with a 0.45 micron filter, and samples were immediately frozen for preservation. These samples were used for nutrient analysis. Temperature measurements were made using a Fluke thermocouple temperature probe. The temperature probe was inserted to a depth of 30 cm inside the ¹/₄ inch mini piezometers to measure temperatures in the spawning gravel. The temperature probe was calibrated by immersing the probe in boiling water followed by immersion in an ice bath. Temperatures are within one tenth of a degree Celsius.

3.21 Hach Chemistry

Samples collected from each mini piezometer and two random river locations (identified as surface samples) were analyzed for nitrate, nitrite, ammonia, and phosphate concentrations using a Hach DR/2010 Spectrophotometer. Pre-programmed powder packet methods specific for the Hach DR/2010 instrument were used for each constituent. Sample blanks were analyzed according to method instructions at the beginning of analysis and periodically through the analysis. A summary of these methods follows:

Nitrate, Middle Range (0-4.5 mg/L NO₃⁻N)

A 25ml thick-walled glass sample cell was filled with sample and one NitraVer 5 Nitrate Reagent Powder Pellet, and allowed to react for six minutes before analysis at 400 nm. **Nitrate, Low Range** (0-0.300 mg/L NO₂⁻N)

A 10ml thick-walled glass sample cell was filled with sample and one NitriVer3 Nitrite Reagent Powder Pillow, and allowed to react for 20 minutes before analysis at 507 nm.

Ammonia, (0-2.50 mg/L NH₃⁻N)

A 25ml aliquot of sample is measured into a 25 ml mixing graduated cylinder, and treated with mineral stabilizer and polyvinyl alcohol dispersing agent. Nessler reagent was added and allowed to react for one minute before analysis at 380 nm.

Phosphorous, Reactive (0-2.50 mg/L PO₄³⁻)

Method 8048 - PhosVer3 (Ascorbic Acid) Method

A 10ml thick-walled sample cell was filled with sample and one PhosVer3 Phosphate Powder Pillow, and allowed to react after mixing for two minutes before analysis at 890 nm.

3.3 Hyporheic Pressure Head Measurements

A manometer board was used to measure the difference in pressure head between the piezometers and the bottom of the streambed. The manometer board (Zamora, 2006) consisted of a graduated board with a glass tube in the shape of an inverted "U". The glass tube was then attached to the piezometer of interest on one side and a baffle bubble on the streambed bottom on the other side. Figure 5 shows the manometer used for measurements. The tubing from the manometer board was then connected to the baffle bubble. The baffle bubble created an environment that easily equilibrated to the pressure of the streambed, but removed the issue of stream flow past the manometer tubing, which can greatly affect readings in the manometer board. At the top of the glass tube, a release valve allowed water to be drawn into the manometer board from the bottom of the streambed and the piezometer. All devices used to measure the hyporheic zone were calibrated within 30 minutes of field usage where applicable.

Figure 5: Picture of the manometer used for measuring the upwelling or downwelling for each mini piezometer. The photo to the right shows a close-up view of the different pressure heads from a measurement.

3.4 Water Depth and Velocity

A Price AA flow meter and wading rod was used to measure the water depth and velocity at each mini piezometer location in the gravel addition and control areas. Velocity was measured at the 0.2, 0.6, and 0.8 water depth to obtain a representative (average) velocity. Average velocity can be obtained two ways:

(1)
$$Vaverage = \frac{V0.2 + V0.8}{2}$$

(2)
$$Vaverage = V0.6$$

The average of the 0.2 and 0.8 values are compared with the 0.6 depth for measurement accuracy. The 0.8 depth is also the approximate "snout velocity" for spawning salmonids. Velocity was calculated by counting the revolutions per minute from the flow meter and converting to velocities using the equation: V=2.2048R + 0.0178; where R is the number of revolutions per minute, and V is the velocity in feet per minute (converted to feet per second). Figure 6 shows a picture of the equipment used to measure the velocity and depth of the study area.

Figure 6: Picture showing the Price AA wading rod stream velocity measuring equipment.

3.5 Inter Gravel Velocity Measurements

Inter gravel velocity was measured in the gravel addition area by conducting salt water tracer tests. The inter-gravel velocity of the tracer used was converted to hydraulic conductivity using the following equation:

$$(3) v = -\frac{Kdh}{n_e dl}$$

This equation describes the seepage velocity, where n_e is the porosity (porosity value of 20% used for this study) and dh/dl is approximated to be the stream gradient.

In these tests, a main well or injection well of 1 ³/₄ inch diameter stainless steel pipe was inserted 30 cm into the subsurface. Three 1 ¹/₄ inch diameter stainless steel pipes (monitoring wells) were installed with 30 cm, 60 cm, and 90 cm spacing downstream from the injection well, to a depth of 30 cm. Each well was purged (developed) prior to tracer measurements. Orion electric conductivity meters were inserted into the injection well and the three monitoring wells. The meters were calibrated 30 minutes prior to each field day used. The background conductivity was measured in each well to verify the meter's accuracy prior to testing. Figure 7 shows the monitoring well configuration for salt water tracer tests with a 30cm monitoring well spacing from the injection well.

Figure 7: Picture showing the field set up of the permeability measurements.

During a typical test, two liters of super-saturated saltwater solution were injected into the main well. The saltwater solution was created by the addition of 5 lbs of rock salt to 3 gallons of water. Salt crystals were still visible in the water 12 hours after the solution was created, and provided visual confirmation that the tracer fluid was saturated with sodium chloride. During each test, each EC meter was monitored for an increase in conductivity as time elapsed. Increases in the conductivity readings were recorded with time until the electrical conductivity readings became stable, or greater than 30 minutes of time had elapsed since the original increase. The electrical conductivity readings in the saturated solution were usually several orders of magnitude higher than the background (river) conductivity readings, giving an obvious electrical signal from the salt plume arrival at each well. This tracer test method is used to provide a graph of electrical conductivity versus time at different monitoring points. The arrival time of the plume at each piezometer along with the distance from the injection source is used to derive the Darcian (inter gravel) velocity for the tracer test area.

4.0 Results; Before Gravel Addition Grain Analysis

20 Pebble counts were conducted at the restoration site and up to 3 miles downstream from the restoration site before the 2008 restoration project started. The pre-restoration downstream pebble counts showed a range in grain sizes from fine-grained sand to10 inch diameter boulders. Figure 8 shows the location of the downstream pebble counts. Figure 9 shows the cumulative frequency graph for the 20 pebble counts conducted from the western tip of Sailor Bar downstream to the Sunrise bridge. There was no trend or pattern to the grain size distribution from the upper portion of the study area (Sailor Bar) to the downstream portion of the study area (Sunrise). Median grain size diameters (d_{50}) ranged from 7/16 inch to 1 ¼ inch.

Figure 8: Map showing the downstream pebble count locations with red triangles. Pebble counts were conducted from the 2008 gravel addition downstream to the Sunrise bridge.

Figure 9: Graph showing the cumulative frequency of each pebble count of the downstream pebble counts. Pebble counts were conducted in the summer of 2008 prior to restoration work. Transects are listed upstream to downstream.

4.1 Before Gravel Addition Water Quality

A total of 8 mini piezometers were installed before the gravel addition. Figure 10 shows the location of the mini piezometers before gravel addition. The before restoration water quality data is shown in table 1. Mean dissolved oxygen measurements before the gravel addition (Figure 11) were 4.5 mg/L with a range from 1.1 mg/L to 7.65 mg/L. The mean electrical conductivity for the gravel before restoration was 51.3 micro Siemens with a range from 37.2 micro Siemens to 69.4 micro Siemens. Mean pH for the gravel before restoration was 6.8 with a range from 6.6 to 7.2. Mean temperature at a depth of 30 cm in the gravel (before restoration) was 22.0 degrees Celsius. Gravel temperature measurements ranged from 21.6 degrees Celsius to 22.0 degrees Celsius.

Figure 10: Before gravel addition map showing the gravel addition area outlined in yellow. Points are mini piezometer locations used to sample pre restoration and control hyporheic water quality.

Piezometer ID	D.O. (mg/L)	pН	Ε.С. (μs)	Temp (C°)
MP-1	1.1	6.1	51.8	22.2
MP-2	7.45	6.6	37.2	21.8
MP-3	6.28	6.9	37.2	21.7
MP-4	7.62	7.3	52	21.6
MP-5	1.02	6.8	69.4	21.8
MP-7	5.38	6.9	54.6	22.6
MP-8	2.8	6.9	57.2	22.6
Mean	4.5	6.8	51.3	22
Surface	9.74	7.0	54.1	21.9

Table 1: Before gravel addition mini piezometer data September 2008.

Figure 11: Before gravel addition map of the study area showing dissolved oxygen readings, September 2008.

4.2 Before Gravel Addition Hyporheic Pressure Head Measurements

Upwelling and downwelling measurements made before the gravel addition all showed downwelling conditions. Figure 12 shows the upwelling/downwelling map for the pre gravel addition area.

Figure 12: Before gravel addition upwelling/downwelling measurements. The red arrows pointing downward indicate downwelling.

4.3 Before Gravel Addition Depth/Velocity Measurements

Table 2 shows the water depth and velocity measurements before gravel was added. The flow for the September 5, 2008 sampling event was 1300 cfs. Mean velocity for surface water before restoration was 1.25 feet per second with a mean depth of 2.9 feet.

Location	Depth (ft)	Velocity (feet/second)
MP-1	2.3	1.05
MP-2	2.6	1.08
MP-3	2.8	0.9
MP-4	2.9	0.79
MP-5	3.1	1.34
MP-6	1.9	0.68
MP-7	2.8	1.45
MP-8	2.5	1.49
Mean	2.9	1.25

Table 2: Before gravel addition depth and velocity data for the mini piezometers September 2008.

4.01 Results; After Gravel Addition Grain Analysis

9 Pebble counts were conducted in June 2009 after the gravel addition was completed. Figure 13 shows a map of pebble count locations. Figure 14 shows the cumulative frequency graph for the pebble counts conducted after restoration. Median grain size diameters (d_{50}) ranged from 5/8 inch to 7/8 inch. Appendix B shows the data from the pebble counts.

Figure 13: After gravel addition map of the pebble counts conducted in June 2009

Figure 14: Graph showing the cumulative frequency of each pebble count after gravel addition, June 2009.

4.11 After Gravel Addition Water Quality

15 mini piezometers were installed in December 2008 after the gravel addition. Figure 15 shows the location of the mini piezometers after the gravel was added. Table 3 shows the water quality data for the post gravel addition area sampled in February and June, 2009. Water samples were collected before and after gravel addition measuring for Nitrate, Nitrite, Phosphate, and Ammonia. None of the samples showed values higher than the lowest detectable limits for any of the water samples. Appendix C shows the HACH chemistry data for the before and after gravel addition water chemistry analysis. Most of the water samples measured barely showed the lowest detectable limits for the given test; none of the samples contained even moderate concentrations of anything measured.

Figure 15: After gravel addition map showing the gravel addition area. Points indicate mini piezometer locations. MP C and MP L are upstream of the gravel to provide control measurements.

Figure 16: After gravel addition map of the study area dissolved oxygen readings February 2009.

Piezometer ID	D.O. (mg/L)	рН	Ε.С. (μs)	Temp (C°)	
MP-A	10.5	7.06	80.7	9.4	
MP-B	10.4	7.26	80.5 9.2		
MP-C	10.2	7.55	82.0	9.6	
MP-D	10.4	7.14	80.5	9.4	
MP-E	10.8	7.48	79.1	10.2	
MP-F	10.2	7.19	78.3	9.6	
MP-G	10.0	7.46	78.4	9.5	
MP-H	10.4	7.56	77.9	9.8	
MP-I	10.6	7.54	78.5	9.4	
MP-J	10.3	7.28	78.6	9.4	
MP-K	10.9	7.51	79.1	9.4	
MP-M	10.6	7.1	81.8	9.9	
MP-O	11.0	7.49	78.8	9.5	
Surface	11.2	7.52	80.2	9.6	
Mean	10.5	7.4	79.6	9.6	

 Table 3: After gravel addition mini piezometer water quality data from Sailor Bar

 February 2009.

Mean E.C. measured after the gravel addition was 79.6 µs with measurements ranging from 78µs -82µs. The mean D.O. recorded (Figure 16) was 10.5 mg/L with a measurement range of 10.0 mg/L to 11.2 mg/L. The mean pH was 7.4 with a range from 7.1 to 7.5. The mean temperature recorded was 9.6 degrees Celsius with a range from 9.2 to 10.2 degrees Celsius.

4.21 After Gravel Addition Hyporheic Pressure Head Measurements

Figure 17 shows the upwelling/downwelling map for the post gravel restoration area. Measurements were made in February 2009 with a river flow approximately 750 cfs. Table 4 shows the vertical gradient for each mini piezometer. Gradient was calculated by taking the measurement from the monometer board (difference in hydraulic head dh) and dividing it by the 30 cm length of the piezometer (dl).

Piezometer ID	Gradient
MP-A	0.02
MP-B	0.01
MP-C	Even
MP-D	-0.06
MP-E	0.03
MP-F	-0.06
MP-G	0.02
MP-H	0.02
MP-I	0.05
MP-J	0.03
MP-K	0.05
MP-M	0.02

Table 4: After gravel addition vertical gradient data from February 2009. Negative values indicate upwelling, positive values indicate downwelling.

Figure 17: After gravel addition map showing upwelling/downwelling measurements. The red arrows pointing downward indicate downwelling, the purple arrow pointing upward indicate upwelling conditions February 2009.

4.31 After Gravel Addition Depth/Velocity Measurements

Velocity and depth were measured in February 2009, after the gravel was added. Table 5 shows the depth and velocity measurements. The flow for the February 21, 2009 sampling event was 780 cfs. The low flow caused many locations to be too shallow to measure the stream velocity for the post gravel addition data. The mean velocity for the restoration area was 2.55 feet per second. The mean depth was 0.9 feet. Figure 18 shows the locations of the velocity measurements.

Location	Depth (ft)	Velocity (feet/second)
MP-A	0.8	2.81
MP-E	1.0	1.97
MP-G	0.5	1.86
MP-H	1.0	4.35
MP-I	1.4	3.21
MP-J	0.9	2.4
MP-K	0.5	1.45
MP-O	1.3	5.01
MP-B	0.6	0.2
Mean	0.9	2.55

Table 5: After gravel addition depth and velocity data. Several piezometers were omitted due to insufficient water depth for measurement February 2009. River flow was 780cfs.

Figure 18: After gravel addition map showing average surface water velocity measurements in February 2009. Stream flow was 780 cfs. Mini piezometers without velocity values were either too shallow or less than 1 foot per second.

4.4 After Gravel Addition Gravel Mobility

Figure 19 shows the tracer rock transects installed after gravel addition. The gravel addition is highlighted with a (yellow) dotted line. The furthest downstream transect lost the southern 1/3 of the tracer rocks, almost immediately to a blowout or loss of gravel. The middle and upper transects also lost considerable rocks to either burial or movements by fish during the salmon redd building process. This was witnessed on multiple occasions by the field crew. Substantial numbers of yellow and blue rocks were located 8 months after the gravel addition was completed. The upper transect recovered 19 large (yellow, 2 $\frac{1}{2}$ -3 inch) rocks, 12 intermediate-sized (blue, 1 $\frac{1}{4}$ - 1 $\frac{3}{4}$ inch) and 6 small-sized (red, $\frac{5}{8}$ – $\frac{7}{8}$ inch) rocks. The middle transect recovered 17 large rocks, 9 blue rocks and 7 red rocks. Only 5 rocks from the lower transect were located.

After 8 months, and flows up to 5000 cfs. Most of the yellow rocks did not move. There was minor movement of yellow rocks in the high velocity portion of the gravel addition. The middle transect showed a similar pattern, and the downstream transect was either buried or washed out. Few rocks were located from the downstream transect. Blue tracer rocks were mobile in the upper and middle transects, moving up to 20 meters. Red tracer rocks moved the furthest and yielded the smallest number of rocks located due to burial or removal from the area.

Figure 19: After gravel addition map showing the tracer rock transects from June 2009. Yellow points indicate rocks located.

4.5 After Gravel Addition Inter Gravel Velocity Measurements

Four salt water tracer tests were conducted at Sailor Bar in March 2010. The location of these tracer tests is shown on Figure 20. Figures 21-24 show graphs of electrical conductivity versus time for the 4 tests. The tracer tests yielded inter gravel velocities of 10 cm/min to 50cm/min, at a depth of 30 cm and 18 months after restoration work. A monitoring well, spaced 10 cm from the injection well showed elevated electrical conductivity values immediately after sodium chloride injection for every test. Inter gravel velocities for the 10 cm and 20 cm monitoring wells were between 20 cm/min and 50 cm/min. The velocities recorded at the 30 cm and 40 cm distances were between 10 cm/min and 12 cm/min. Distances greater than 50cm from the injection often missed the tracer plume except for test 2, where the monitoring well 47 cm from the injection well showed a velocity of 24 cm/min. The tracer test was added at time= 0; and the arrival time is taken as the midpoint of the E.C. curve for each monitoring well.

Figure 20: After gravel addition map of the salt water tracer tests. Tracer tests were conducted in March 2010.

Figure 21: Electrical conductivity versus time graph of a salt water tracer test 1 from Sailor Bar, March 2010.

Figure 22: Electrical conductivity versus time graph of salt water tracer test 2 from Sailor Bar, March 2010.

Figure 23: Electrical conductivity versus time graph of salt water tracer test 3 from Sailor Bar, March 2010.

Figure 24: Electrical conductivity versus time graph of salt water tracer test 4 from Sailor Bar, March 2010.

5.0 Discussion

All of the parameters studied in this report changed as a result of the addition of the gravel at the Sailor Bar location. Several of these changes had significant impacts on the spawning habitat. The most significant changes were smaller and more uniform gravel size with 80% of the new gravel less than 1.25 inch diameter with a mean of 0.875 inches. This changed from the previous grains sizes that ranged from .325 inches to over 12 inches intermediate diameter with a mean diameter of 3 inches. Dissolved oxygen measurements were significantly higher in the new gravel area. Mean D.O. before gravel was added was 4.5 mg/L. The mean D.O. measured after the gravel was added was 10.5 mg/L. Some of this difference is attributed to water temperature differences from summer and winter. pH and electrical conductivity were more uniform in the new gravel, with less than 1% deviation in the measurements for E.C. and 15% deviation for the pH.

Tracer rocks studies showed that the smallest tracer rocks (5/8" to ³/₄' were mobilized and washed downstream from the study area by this year's maximum flow of 5000 cfs. Many of the intermediate and largest tracer rocks were still present in the new gravel area 8 months after the rocks were inserted, moving up to 20 meters in some cases.

Salt water tracer tests has showed the gravel addition to be highly permeable with seepage values of 20 cm/min to 50 cm/min within 20 cm of the injection well, with the 10 cm monitoring well having an immediate reaction to the sodium chloride at all tests. Velocities decreased to 10 cm/min and 14 cm/min at distances of 30 cm to 40 cm away from the injection well. Only one monitoring well observed changes more than 50 cm away from the injection well during testing, having a velocity of 14 cm/min. These times indicate rapid movement of water between the pore spaces in the tested locations.

35

Physical and hydrologic measurements conducted at the Sailor Bar gravel addition site indicate a positive effect in terms of improving spawning habitat. Inter gravel velocities and dissolved oxygen measurements are both elevated in the new gravel. The gravel addition has also had a stabilizing affect on the pH, electrical conductivity, and temperature. Hyporheic pressure changed from complete downwelling prior to restoration to almost complete upwelling after the gravel was added.

Personal observation during field work in the gravel addition during spawning times showed that over 70% of the gravel addition area was being used for spawning during the fall Chinook salmon run. The salmon were able to move the gravel to build redds with relative ease compared to previous years, when embedded rocks inhibited spawning. Improved hyporheic conditions will give the salmon an improved chance of spawning success.
References

Bush, N.J. 2006. Natural water chemistry and vertical hydraulic gradient in the hyporheic zone of the Cosumnes River near Sacramento, CA. M.S. thesis. CSUS.

Castleberry, D.T., J.J. Cech, Jr., M.K. Saiki, and B.A. Martin. 1993. Growth, condition and physiological performance of juvenile salmonids from the American River. US. Fish and Wildlife Service, Dixon, CA.

Fairman, D. 2007. A gravel budget for the Lower American River. M.S. thesis. CSUS.

Horner, T.C. 2005. Physical and geochemical characterization of American River spawning gravels. Report to the US Bureau of Reclamation, Sacramento Office.

Horner, T.C., R. Titus, and M. Brown. 2004. Phase 3 gravel assessment on the lower American River: Report to the US Bureau of Reclamation Sacramento Office.

Kondolf. G. M. M. J. Sale and M, G. Wolman. 1993. Modification of gravel size by spawning salmonids. Water Resources Research 29:2265-2274.

Kondolf, G. M. and M. G. Wolman. 1993. The sizes of salmonid spawning gravels. Water Resources Research 29:2275-2285.

Morita, E. 2005. The relationship between streambed topography, hyporheic flow, and pore water geochemistry in salmon spawning gravels of the American River, Sacramento. Master's thesis, California State University Sacramento.

Merz, J.E. and Vanicek C.D. 1996. Comparative feeding habitats of juvenile Chinook salmon, steelhead, and Sacramento squawfish in the lower American River, California.

Snider, B., Christophel, D.B., Jackson, B.L., and Bratovitch, P.M., 1992, Habitat characterization of the Lower American River, California Department of Fish and Game, Environmental Services Division in cooperation with Beak Consultants and the county of Sacramento, California, Unpublished report, 20 p.

Wolman, M. G. 1954. A method of sampling coarse river-bed material. Transactions, American Geophysical Union 35:951-956.

Vyverberg, K., Snider, B., and Titus, R.G., 1997, Lower American River Chinook Salmon spawning habitat evaluation October 1994: California Department of Fish and Game Environmental Services Division Technical Report Number 97-2, 112 p.

Zamora, C. 2006. Estimating rates of exchange across the sediment/water interface in the lower Merced River, CA. M.S. thesis. CSUS.

Appendix A: Downstream Pebble Counts from Sailor Bar to Sunrise Ave., before gravel addition

Appendix B: After gravel addition pebble count analysis

Appendix C: Hach Chemistry (Chemical analysis) of surface water and gravel pore water before and after gravel addition

	Date		Nitrate,	Nitrite,	Ammonia,	Phosphate,
Location	Sampled	Sample ID	mg/L	mg/L	mg/L	mg/L
		Blank	0.3	0.002	0	-
Sailor,		Surface Water				
pre	9/19/2008	1	0.3	0.003	0	0.02
Sailor,						
pre	9/19/2008	Surface 2	0.3	0.003	0.01	0.01
Sailor,						
pre	9/19/2008	MP2-4	0.4	0.002	0	0
Sailor,						
pre	9/19/2008	MP2-5	0.3	0.004	0.1	0.07
Sailor,						
pre	9/19/2008	MP2-6	0.3	0.003	0.01	0.06
Sailor,						
pre	9/19/2008	MP2-7	0.4	0.002	0	0.01
Sailor,						
pre	9/19/2008	MP2-8	0.4	-	0	0.25
Surface 1						
(am)	9/19/2008		0.4	0.002	0	0.1
Surface 2						
(pm)	9/19/2008		0.4	0.003	0	0.08

Chemical Analysis for Sailor Bar (Before gravel addition June, 2008)

Leasting	Date	Sample	Nitrate,	Nitrite,	Ammonia,	Phosphate,
Location	Sampled	ID	mg/L	mg/L	mg/L	mg/L
post	2/20/2009	Surface	0.4	0.003	0	0.17
Sailor,						
post	2/20/2009	MPA	0.5	0.002	0	0.02
Sailor,						
post	2/20/2009	MPB	0.5	0.002	0.06	0.05
Sailor,						
post	2/20/2009	MPC	0.4	0.003	0.01	0.06
Sailor,						
post	2/20/2009	MPD	0.6	0.003	0.02	0.07
Sailor,						
post	2/20/2009	MPE	0.4	0.002	0.02	0.16
Sailor,						
post	2/20/2009	MPF	0.4	0.003	0	0.13
Sailor,						
post	2/20/2009	MPG	0.6	0.004	0	0.24
Sailor,						
post	2/20/2009	MPH	0.5	0.003	0.07	0.04
Sailor,						
post	2/20/2009	MPI	0.5	0.003	0.16	0.14
Sailor,						
post	2/20/2009	MPJ	0.6	0.003	0.05	0.09
Sailor,						
post	2/20/2009	MPK	0.4	0.003	0.01	0.14
Surface 1						
(am)	2/20/2009		0.4	0.002	0	0.1
Surface 2						
(pm)	2/20/2009		0.3	0.003	0	0.1

Chemical Analysis for Sailor Bar (After gravel addition February, 2009)

Appendix D: Inter gravel velocity test data, after gravel addition

	10 cm	20 cm	30 cm
Time (sec)	EC 1	EC 2	EC 3
0	57	57	57.6
5	57	57	57.6
10	57	57	57.6
15	70	57	57.6
20	93	58	57.6
25	114	62	57.6
30	124	64	57.6
45	570	102	62.3
60	386	102.7	70
75	252	714	85
90	183	700	91
105	152	630	106
120	148	630	140
135	130	518	183
150	115	395	230
165	104	348	239
180	102	318	233
195	107	298	227
210	110	293	212
225	150	334	210
240	155	324	218
255	141	284	215
270	115	241	214
285	111	238	217
300	111	229	215
315	118	254	211
330	135	257	207
345	122	235	197
360	107	208	185
375	95	160	175
390	116	158	150
405	152	166	136
420	89	155	125
435	84	130.8	109
450	78	115.5	97
465	83	104.7	84
480	85	103.2	82
495	85	101	80
510	86	97.2	78
525	85	93	75
540	87	93	73

Tracer test 1 time and electrical conductivity data, after gravel addition, March 2010.
	10 cm	20cm	30cm	47 cm
Time				
(sec)	EC 1	EC 2	EC 3	EC 4
0	59	59	59	59
5	110	59	59	59
10	254	59	59	59
15	389	62	59	59
20	565	67	60	59
25	600	71	61	59
30	640	78	63	59
45	570	102	330	60
60	512	142	363	116
75	478	226	367	142
90	406	287	367	148
105	334	349	404	179
120	297	409	404	195
135	276	368	182	250.3
150	270	329	133	315
165	277	286	120	301
180	276	261	105	282
195	260	205	97	271
210	262	231	90	270
225	285	208	87	257
240	203	166	84	243
255	187	170	81	229
270	178	165	80	213
285	187	164	74	207
300	184	164	73	191
315	172	162	74	196
330	140	142	70	207
345	134	144	67	193
360	133	122	68	185
375	123	133	67	167
390	107	141	69	162
405	114	122	68	155
420	109	119	67	152
435	107	108	66	153
450	128	104	65	152
465	112	99	66	146
480	116	107	64	147
495	100	105	64	142

49510010564142Tracer test 2 time and electrical conductivity data, after gravel addition, March 2010.

	11 cm	23cm	35 cm	48 cm
Time				
(sec)	EC 1	EC 2	EC 3	EC 4
0	58	58	58	57
15	789	522	58	57
30	842	685	58.3	57
45	902	699	58	57
60	883	741	60	61
75	874	846	60	61
90	741	917	61	66
105	623	863	75	75
120	620	611	81	130
135	487	518	119	226
150	336	395	146	226
165	294	281	204	231
180	265	143	175	257
195	277	132	116	263
210	203	121	899	373
225	140	108	416	712
240	160	98	323	688
255	150	94	285	547
270	130	80	269	414
285	120	80	212	373
300	120	80	168	212
315	110	79	153	209
330	110	79	143	181
345	110	79	126	172
360	130	79	115	152
375	120	78	111	119
390	100	77	113	110
405	100	77	101	105
420	100	77	99	.00
435	85	77	93	94
450	84	77	91	85
465	74	77	89	81
480	74	77	87	78
405	74	77	8/	70
510	74	77	80	74
525	74	77	80 82	73
540	74	77	70	73
540	/4	11	19	12

Tracer test 3 time and electrical conductivity data, after gravel addition, March 2010.

12 cm 19 cm 55 cm 77 cm Time (sec) EC 1 EC 2 EC 3 EC 4 0 58 58 59 58 10 932 449 59 588 10 932 449 59 588 10 932 449 59 588 10 985 739 59 588 20 1048 813 59 588 20 1048 813 59 588 30 1136 924 59 588 45 1400 1466 86 622 60 1689 1722 203 621 75 1544 1756 169 611 105 1301 1767 237 611 120 1174 1714 270 600 155 1037 1690 328 59 105 1037 1610 <th></th> <th></th> <th></th> <th></th> <th></th>					
Time (sec) EC 1 EC 2 EC 3 EC 4 0 58 58 59 58 5 845 231 59 58 10 932 449 59 58 15 985 739 59 58 20 1048 813 59 58 20 1048 813 59 58 30 1136 924 59 58 30 1136 924 59 58 45 1400 1466 86 62 60 1689 1722 203 62 75 1544 1756 169 61 105 1301 1767 237 61 1105 1301 1767 237 60 135 1058 1703 287 60 150 1046 1692 318 60 155 1051 1254<		12 cm	19cm	55 cm	77 cm
(sec)EC 1EC 2EC 3EC 405858595858452315958109324495958159857395958201048813595825109988759583011369245958301136924595845140014668662260168917222036227515441756169619013251789195611051301176723761120117417142706013510581703287601501046169231860165103716903285918010221675341592109511254381592259331247400602408891236399602558611225428602708441213465603306841171549713456741154556713606331121621713606331121621713606331121621704055591083708	Time				
058585958109324495958109324495958159857395958201048813595825109988759583011369245958451400146686626016891722203627515441756169619013251789195611051301176723761120117417142706013510581703287601501046169231860165103716903285918010221675341592109511254381592259331247400602408891236399602558611225428602708441213465603007541192531613157221181537643306841171549713606331121621713756091114651703905821100697704055591083708704205271074730 <td>(sec)</td> <td>EC 1</td> <td>EC 2</td> <td>EC 3</td> <td>EC 4</td>	(sec)	EC 1	EC 2	EC 3	EC 4
5 845 231 59 58 10 932 449 59 58 15 985 739 59 58 20 1048 813 59 58 25 1099 887 59 58 30 1136 924 59 58 45 1400 1466 86 622 60 1689 1722 203 62 75 1544 1756 169 611 90 1325 1789 195 611 105 1301 1767 237 611 105 1301 1767 237 61 1105 1301 1767 237 60 135 1058 1703 287 60 150 1046 1692 318 60 165 1037 1690 328 59 180 1022 1675 341 59 210 951 1254 381 59 225 933 1247 400 60 240 889 1236 399 60 255 861 1225 428 60 270 844 1213 465 60 285 779 1205 495 60 300 754 1192 531 611 315 722 1181 537 64 330 684 1171 549 711 360 633 <t< td=""><td>0</td><td>58</td><td>58</td><td>59</td><td>58</td></t<>	0	58	58	59	58
10932449595815985739595820104881359582510998875958301136924595845140014668662601689172220362751544175616961901325178919561105130117672376112011741714270601351058170328760150104616923186016510371690328591801022167534159210951125438159225933124740060240889123639960255861122542860270844121346560300754119253161315722118153764330684117154971345674115455671360633112162171375609111465170390582100697704055591083708704205271074730694354781060 <td< td=""><td>5</td><td>845</td><td>231</td><td>59</td><td>58</td></td<>	5	845	231	59	58
159857395958201048 813 5958251099 887 5958301136924595845140014668662601689172220362751544175616961901325178919561105130117672376112011741714270601351058170328760150104616923186016510371690328591801022167534159210951125438159225933124740060240889123639960255861122542860270844121346560300754119253161315722118153764330684117154971345674115455671360633112162171375609111465170390582100697704055591083708704205271074730694504631052771684654451042<	10	932	449	59	58
20 1048 813 59 58 25 1099 887 59 58 30 1136 924 59 58 45 1400 1466 86 62 60 1689 1722 203 62 75 1544 1756 169 61 90 1325 1789 195 61 105 1301 1767 237 61 120 1174 1714 270 60 135 1058 1703 287 60 150 1046 1692 318 60 165 1037 1690 328 59 180 1022 1675 341 59 210 951 1254 381 59 225 933 1247 400 60 240 889 1236 399 60 255 861	15	985	739	59	58
25 1099 887 59 58 30 1136 924 59 58 45 1400 1466 86 62 60 1689 1722 203 62 75 1544 1756 169 61 90 1325 1789 195 61 105 1301 1767 237 61 120 1174 1714 270 60 135 1058 1703 287 60 150 1046 1692 318 60 165 1037 1690 328 59 180 1022 1675 341 59 210 951 1254 381 59 225 933 1247 400 60 240 889 1236 399 60 255 861 1225 428 60 270 844 1213 465 60 285 779 1205 495 60 300 754 1192 531 611 315 722 1181 537 64 330 684 1171 549 711 345 674 1154 556 711 360 633 1121 621 71 375 609 1114 651 70 440 559 1083 708 70 445 1042 806 68 <td>20</td> <td>1048</td> <td>813</td> <td>59</td> <td>58</td>	20	1048	813	59	58
30 1136 924 59 58 45 1400 1466 86 62 60 1689 1722 203 62 75 1544 1756 169 61 90 1325 1789 195 61 105 1301 1767 237 61 120 1174 1714 270 60 135 1058 1703 287 60 150 1046 1692 318 60 165 1037 1690 328 59 180 1022 1675 341 59 210 951 1254 381 59 225 933 1247 400 60 240 889 1236 399 60 255 861 1225 428 60 270 844 1213 465 60 285 779	25	1099	887	59	58
45 1400 1466 86 62 60 1689 1722 203 62 75 1544 1756 169 61 90 1325 1789 195 61 105 1301 1767 237 61 120 1174 1714 270 60 135 1058 1703 287 60 150 1046 1692 318 60 165 1037 1690 328 59 180 1022 1675 341 59 210 951 1254 381 59 225 933 1247 400 60 240 889 1236 399 60 255 861 1225 428 60 270 844 1213 465 60 285 779 1205 495 60 300 754	30	1136	924	59	58
60 1689 1722 203 62 75 1544 1756 169 61 90 1325 1789 195 61 105 1301 1767 237 61 120 1174 1714 270 60 135 1058 1703 287 60 150 1046 1692 318 60 165 1037 1690 328 59 180 1022 1675 341 59 210 951 1254 381 59 225 933 1247 400 60 240 889 1236 399 60 255 861 1225 428 60 270 844 1213 465 60 285 779 1205 495 60 300 754 1192 531 61 315 722	45	1400	1466	86	62
75 1544 1756 169 61 90 1325 1789 195 61 105 1301 1767 237 61 120 1174 1714 270 60 135 1058 1703 287 60 150 1046 1692 318 60 165 1037 1690 328 59 180 1022 1675 341 59 195 975 1664 367 59 210 951 1254 381 59 225 933 1247 400 60 240 889 1236 399 60 255 861 1225 428 60 270 844 1213 465 60 285 779 1205 495 60 300 754 1192 531 611 315 722 1181 537 64 330 684 1171 549 711 345 674 1154 556 711 360 633 1121 621 71 390 582 100 697 70 405 559 1083 708 70 420 527 1074 730 69 450 463 1052 771 68 465 445 1042 806 68 480 429 1030 815	60	1689	1722	203	62
90 1325 1789 195 61 105 1301 1767 237 61 120 1174 1714 270 60 135 1058 1703 287 60 150 1046 1692 318 60 165 1037 1690 328 59 180 1022 1675 341 59 195 975 1664 367 59 210 951 1254 381 59 225 933 1247 400 60 240 889 1236 399 60 255 861 1225 428 60 270 844 1213 465 60 285 779 1205 495 60 300 754 1192 531 61 315 722 1181 537 64 330 684	75	1544	1756	169	61
105 1301 1767 237 61 120 1174 1714 270 60 135 1058 1703 287 60 150 1046 1692 318 60 165 1037 1690 328 59 180 1022 1675 341 59 195 975 1664 367 59 210 951 1254 381 59 225 933 1247 400 60 240 889 1236 399 60 255 861 1225 428 60 270 844 1213 465 60 285 779 1205 495 60 300 754 1192 531 611 315 722 1181 537 64 330 684 1171 549 711 345 674 1154 556 711 360 633 1121 621 711 375 609 1114 651 700 405 559 1083 708 70 420 527 1074 730 69 435 478 1060 766 69 450 463 1052 771 68 465 445 1042 806 68 480 429 1030 815 68 495 401 1021	90	1325	1789	195	61
120 1174 1714 270 60 135 1058 1703 287 60 150 1046 1692 318 60 165 1037 1690 328 59 180 1022 1675 341 59 195 975 1664 367 59 210 951 1254 381 59 225 933 1247 400 60 240 889 1236 399 60 255 861 1225 428 60 270 844 1213 465 60 285 779 1205 495 60 300 754 1192 531 61 315 722 1181 537 64 330 684 1171 549 71 345 674 1154 556 711 360 633 1121 621 71 375 609 1114 651 70 405 559 1083 708 70 405 559 1083 708 70 420 527 1074 730 69 435 478 1060 766 69 445 445 1042 806 68 480 429 1030 815 68 495 401 1021 822 67 510 392 1010 827	105	1301	1767	237	61
1351058170328760150104616923186016510371690328591801022167534159195975166436759210951125438159225933124740060240889123639960255861122542860270844121346560285779120549560300754119253161315722118153764330684117154971345674115455671390582110069770405559108370870405559108370870435478106076669450463105277168465445104280668480429103081568495401102182267510392101082766	120	1174	1714	270	60
150 1046 1692 318 60 165 1037 1690 328 59 180 1022 1675 341 59 195 975 1664 367 59 210 951 1254 381 59 225 933 1247 400 60 240 889 1236 399 60 255 861 1225 428 60 270 844 1213 465 60 285 779 1205 495 60 300 754 1192 531 61 315 722 1181 537 64 330 684 1171 549 71 345 674 1154 556 71 360 633 1121 621 71 375 609 1114 651 70 405 559 1083 708 70 405 559 1083 708 70 420 527 1074 730 69 435 478 1060 766 69 450 463 1052 771 68 465 445 1042 806 68 480 429 1030 815 68 495 401 1021 822 67 510 392 1010 827 66	135	1058	1703	287	60
165 1037 1690 328 59 180 1022 1675 341 59 195 975 1664 367 59 210 951 1254 381 59 225 933 1247 400 60 240 889 1236 399 60 255 861 1225 428 60 270 844 1213 465 60 285 779 1205 495 60 300 754 1192 531 61 315 722 1181 537 64 330 684 1171 549 71 345 674 1154 556 71 360 633 1121 621 71 375 609 1114 651 70 405 559 1083 708 70 405 559 1083 708 70 420 527 1074 730 69 435 478 1060 766 69 450 463 1052 771 68 465 445 1042 806 68 480 429 1030 815 68 495 401 1021 822 67 510 392 1010 827 66	150	1046	1692	318	60
180 1022 1675 341 59 195 975 1664 367 59 210 951 1254 381 59 225 933 1247 400 60 240 889 1236 399 60 255 861 1225 428 60 270 844 1213 465 60 285 779 1205 495 60 300 754 1192 531 61 315 722 1181 537 64 330 684 1171 549 71 345 674 1154 556 711 360 633 1121 621 71 375 609 1114 651 70 405 559 1083 708 70 405 559 1083 708 70 420 527 1074 730 69 435 478 1060 766 69 450 463 1052 771 68 465 445 1042 806 68 480 429 1030 815 68 495 401 1021 822 67 510 392 1010 827 66	165	1037	1690	328	59
1959751664 367 592109511254 381 59225933124740060240889123639960255861122542860270844121346560285779120549560300754119253161315722118153764330684117154971345674115455671360633112162171375609111465170405559108370870420527107473069435478106076669465445104280668480429103081568495401102182267510392101082766	180	1022	1675	341	59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	195	975	1664	367	59
225 933 1247 400 60 240 889 1236 399 60 255 861 1225 428 60 270 844 1213 465 60 285 779 1205 495 60 300 754 1192 531 61 315 722 1181 537 64 330 684 1171 549 71 345 674 1154 556 71 360 633 1121 621 71 375 609 1114 651 70 390 582 1100 697 70 405 559 1083 708 70 420 527 1074 730 69 435 478 1060 766 69 450 463 1052 771 68 465 445 <	210	951	1254	381	59
240 889 1236 399 60 255 861 1225 428 60 270 844 1213 465 60 285 779 1205 495 60 300 754 1192 531 61 315 722 1181 537 64 330 684 1171 549 71 345 674 1154 556 71 360 633 1121 621 71 375 609 1114 651 70 390 582 1100 697 70 405 559 1083 708 70 420 527 1074 730 69 435 478 1060 766 69 450 463 1052 771 68 465 445 1042 806 68 480 429 <	225	933	1247	400	60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	240	889	1236	399	60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	255	861	1225	428	60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	270	844	1213	465	60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	285	779	1205	495	60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300	754	1192	531	61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	315	722	1181	537	64
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	330	684	1171	549	71
360 633 1121 621 71 375 609 1114 651 70 390 582 1100 697 70 405 559 1083 708 70 420 527 1074 730 69 435 478 1060 766 69 450 463 1052 771 68 465 445 1042 806 68 480 429 1030 815 68 495 401 1021 822 67 510 392 1010 827 66	345	674	1154	556	71
375 609 1114 651 70 390 582 1100 697 70 405 559 1083 708 70 420 527 1074 730 69 435 478 1060 766 69 450 463 1052 771 68 465 445 1042 806 68 480 429 1030 815 68 495 401 1021 822 67 510 392 1010 827 66	360	633	1121	621	71
390 582 1100 697 70 405 559 1083 708 70 420 527 1074 730 69 435 478 1060 766 69 450 463 1052 771 68 465 445 1042 806 68 480 429 1030 815 68 495 401 1021 822 67 510 392 1010 827 66	375	609	1114	651	70
405 559 1083 708 70 420 527 1074 730 69 435 478 1060 766 69 450 463 1052 771 68 465 445 1042 806 68 480 429 1030 815 68 495 401 1021 822 67 510 392 1010 827 66	390	582	1100	697	70
420 527 1074 730 69 435 478 1060 766 69 450 463 1052 771 68 465 445 1042 806 68 480 429 1030 815 68 495 401 1021 822 67 510 392 1010 827 66	405	559	1083	708	70
435 478 1060 766 69 450 463 1052 771 68 465 445 1042 806 68 480 429 1030 815 68 495 401 1021 822 67 510 392 1010 827 66	420	527	1074	730	69
450 463 1052 771 68 465 445 1042 806 68 480 429 1030 815 68 495 401 1021 822 67 510 392 1010 827 66	435	478	1060	766	69
465 445 1042 806 68 480 429 1030 815 68 495 401 1021 822 67 510 392 1010 827 66	450	463	1052	771	68
480 429 1030 815 68 495 401 1021 822 67 510 392 1010 827 66	465	445	1042	806	68
<u>495</u> 401 1021 822 67 510 392 1010 827 66	480	429	1030	815	68
510 392 1010 827 66	495	401	1021	822	67
	510	392	1010	827	66

Tracer test 4 time and electrical conductivity data, after gravel addition, March 2010.