Stable isotopes in paleontology and paloclimatology

Back to basics

- Parts of an atom
- Electrons, protons, neutrons
- What does the number of _____ determine?
 - Protons What element it is atomic number
 - Electrons The charge what it bonds with
 - Neutrons The atomic mass
- What's the difference between isotopes and ions?

Ions: same element, different charge Isotopes: same element, different mass

Stable & Unstable isotopes

- Unstable isotopes
- Spontaneously fall apart, emitting particles and energy (radioactivity)
- Stable isotopes
- Remain as they are indefinitely
- Carbon: ¹²C, ¹³C stable, ¹⁴C unstable
- Oxygen: ¹⁶O, ¹⁸O stable, ¹⁷O unstable

What are isotopes good for?

- Unstable: dating (because they decay at a predictable rate)
- Stable: different isotopes of the same element are taken up differently depending on physical and biological conditions

Fundamental premises

- 1. Elements occur in the Earth System in multiple isotopes, both stable and unstable.
- Proportions of stable isotopes in the Earth
 System are constant over the entire system,
 but vary within different parts of the system.
 - The ratios of stable isotopes were set when the Earth formed, with slight changes as things fall to Earth.

Fundamental Premises

- 3. Lighter isotopes are more reactive than heavier isotopes
 - Lighter isotopes are more likely to be lost by diffusion or evaporation
 - In higher temperatures, lighter isotopes are preferentially lost
 - Biological systems will differentiate between isotopes

Fundamental Premises

4. Isotope abundances are expressed as:

$$\delta^{18}O = \left(\frac{\binom{^{18}O}{^{16}O}_{sample}}{\binom{^{18}O}{^{16}O}_{standard}} - 1\right) * 1000 \%_{oo}$$

Fundamental Premises

5. Standards

- Carbon PDB
- PeeDee belemnite from the PeeDee Limestone in Texas – now all used up, so standards is by reference to a known comparison
- Oxygen SMOW
- Standard mean ocean water (H₂O)

Oxygen isotopes

- 16O is the norm 99.8%
- ¹⁸O is normally present in the ocean in very small amounts (0.205%)
- ¹⁶O is lighter, so water containing ¹⁶O is preferentially evaporated
- So seawater and freshwater have different isotopic signatures (ratios)

Stop for worksheet

What are oxygen isotopes good for?

- Temperature and climate
 - Evaporation Enriched
 - Preciptiation Depleted
- Salinity proxy
 - Higher salinity Enriched
- Latitude & biogeography
 - Equatorial Depleted
 - 30° high pressure Enriched
 - 60° low pressure Depleted

Enriched

What are oxygen isotopes good for?

- Glaciation Enriched
- Determining age in organisms that grow by accretion
 Enriched layers in warm seasons, depleted in cold
- Determining diet of organisms
- Marine Enriched
- Terrestrial Depleted
- Terrestrial paleoenvironments
- Near shore Enriched
- Inland of mountains Depleted

Oxygen isotopes in biological systems

- Organisms preferentially use ¹⁸O, so are normally somewhat enriched compared to the environment.
- When temperature decreases, they use more ¹⁸O and it tends to clump up.
- When temperature rises, the ¹⁸O is more energetic, and therefore more reactive.
 Organisms take up more ¹⁶O in warm temps, and the isotopes become more mixed.

What are oxygen isotopes good for?

- Dinosaur warmbloodedness
- How does temperature vary throughout the bodies of warm and cold blooded animals?
- So how should oxygen isotopes vary?

Warmblooded: isotopes should be fairly uniform from core to extremities

Coldblooded: lower ¹⁸O in core, higher in extremities

Carbon isotopes

- Atmospheric carbon is 99+% ¹²C, less than 1%
 ¹³C
- Living systems preferentially take up ¹²C
- Photosynthesis:
 - Different pathways use different ¹³C/¹²C ratios
 - Grasses use one pathway, shrubs use another

Time out for worksheet

Some generalizations

- Biologic carbonate rocks (shallow water)

Depleted

- Terrestrial vegetation Depleted
- Soil Depleted

What are carbon isotopes good for?

- Vertical upwelling brings up more organic material from the bottom.
 - Upwelling areas
 Depleted
- Terrestrial v marine diets use different pathways
- Mass extinction decrease in plant activity in surface waters

 Depleted