Kindergarten

<table>
<thead>
<tr>
<th>Performance standard</th>
<th>DCI</th>
</tr>
</thead>
</table>
| **K-LS1-1.** Use observations to describe patterns of what plants and animals (including humans) need to survive. Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs. | **LS1.C:** Organization for Matter and Energy Flow in Organisms
All animals need food in order to live and grow. They obtain their food from plants or from other animals. Plants need water and light to live and grow. |
| **K-ESS2-1.** Use and share observations of local weather conditions to describe patterns over time | **ESS2.D:** Weather and Climate
Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time |
| **K-ESS2-2.** Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs | **ESS2.E:** Biogeology
Plants and animals can change their environment. |
| **K-ESS3-1.** Use a model to represent the relationship between the needs of different plants or animals (including humans) and the places they live | **ESS3.A:** Natural Resources
Living things need water, air, and resources from the land, and they live in places that have the things they need. Humans use natural resources for everything they do. |
| **K-ESS3-2.** Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather | **ESS3.B:** Natural Hazards
Some kinds of severe weather are more likely than others in a given region. Weather scientists forecast severe weather so that the communities can prepare for and respond to these events |
| **K-ESS3-3.** Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment. | **ESS3.C:** Human Impacts on Earth Systems
Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things | **ETS1.A, ETS1.B (see below)** |
K-PS2-1. Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

PS2.A: Forces and Motion
Pushes and pulls can have different strengths and directions. Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it.

PS2.B: Types of Interactions
When objects touch or collide, they push on one another and can change motion.

PS3.C: Relationship Between Energy and Forces
A bigger push or pull makes things go faster.

K-PS2-2. Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.

ETS1.A: Defining Engineering Problems (see below)

<table>
<thead>
<tr>
<th>K-PS3-1. Make observations to determine the effect of sunlight on Earth's surface</th>
<th>PS3.B: Conservation of Energy and Energy Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-PS3-2. Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area</td>
<td>Sunlight warms Earth's surface</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K-2-ETS1-1. Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.</th>
<th>ETS1.A: Defining and Delimiting Engineering Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-2-ETS1-2. Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem</td>
<td>ETS1.B: Developing Possible Solutions</td>
</tr>
<tr>
<td>K-2-ETS1-3. Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.</td>
<td>ETS1.C: Optimizing the Design Solution</td>
</tr>
<tr>
<td>Because there is always more than one possible solution to a problem, it is useful to compare and test designs.</td>
<td></td>
</tr>
<tr>
<td>Performance Standard</td>
<td>DCI</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----</td>
</tr>
<tr>
<td>1-LS1-1. Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.</td>
<td>LS1.A: Structure and Function
 All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow.</td>
</tr>
<tr>
<td>1-LS1-2. Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.</td>
<td>LS1.B: Growth and Development of Organisms
 Adult plants and animals can have young. In many kinds of animals, parents and the offspring themselves engage in behaviors that help the offspring to survive.</td>
</tr>
<tr>
<td>1-LS3-1. Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.</td>
<td>LS3.A: Inheritance of Traits
 Young animals are very much, but not exactly like, their parents. Plants also are very much, but not exactly, like their parents. LS3.B: Variation of Traits
 Individuals of the same kind of plant or animal are recognizable as similar but can also vary in many ways.</td>
</tr>
<tr>
<td>1-ESS1-1. Use observations of the sun, moon, and stars to describe patterns that can be predicted.</td>
<td>ESS1.A: The Universe and its Stars
 Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted.</td>
</tr>
<tr>
<td>1-ESS1-2. Make observations at different times of year to relate the amount of daylight to the time of year.</td>
<td>ESS1.B: Earth and the Solar System
 Seasonal patterns of sunrise and sunset can be observed, described, and predicted.</td>
</tr>
<tr>
<td>1-PS4-1. Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.</td>
<td>PS4.A: Wave Properties
 Sound can make matter vibrate, and vibrating matter can make sound.</td>
</tr>
<tr>
<td>1-PS4-2. Make observations to construct an evidence-based account that objects can be seen only when illuminated.</td>
<td>PS4.B: Electromagnetic Radiation</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1-PS4-3. Plan and conduct an investigation to determine the effect of placing objects made with different materials in the path of a beam of light.</td>
<td>PS4.B: Electromagnetic Radiation</td>
</tr>
<tr>
<td>1-PS4-4. Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.</td>
<td>PS4.C: Information Technologies and Instrumentation</td>
</tr>
<tr>
<td>K-2-ETS1-1. Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.</td>
<td>ETS1.A: Defining and Delimiting Engineering Problems</td>
</tr>
<tr>
<td>K-2-ETS1-2. Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.</td>
<td>ETS1.B: Developing Possible Solutions</td>
</tr>
<tr>
<td>K-2-ETS1-2. Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.</td>
<td>ETS1.C: Optimizing the Design Solution</td>
</tr>
</tbody>
</table>
Second Grade

<table>
<thead>
<tr>
<th>Performance Standard</th>
<th>DCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-LS2-1. Plan and conduct an investigation to determine if plants need sunlight and water to grow.</td>
<td>LS2.A: Interdependent Relationships in Ecosystems Plants depend on water and light to grow.</td>
</tr>
<tr>
<td>2-LS2-2. Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants</td>
<td>LS2.A: Interdependent Relationships in Ecosystems Plants depend on animals for pollination or to move their seeds around.</td>
</tr>
<tr>
<td>2-LS4-1. Make observations of plants and animals to compare the diversity of life in different habitats.</td>
<td>LS4.D: Biodiversity and Humans There are many different kinds of living things in any area, and they exist in different places on land and in water.</td>
</tr>
<tr>
<td>2-ESS1-1. Make observations from media to construct an evidence-based account that Earth events can occur quickly or slowly.</td>
<td>ESS1.C: The History of Planet Earth Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe.</td>
</tr>
<tr>
<td>2-ESS2-1. Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.</td>
<td>ESS2.A: Earth Materials and Systems Wind and water can change the shape of the land.</td>
</tr>
<tr>
<td>2-ESS2-2. Develop a model to represent the shapes and kinds of land and bodies of water in an area.</td>
<td>ESS2.B: Plate Tectonics and Large-Scale System Interactions Maps show where things are located. One can map the shapes and kinds of land and water in any area.</td>
</tr>
<tr>
<td>2-ESS2-3. Obtain information to identify where water is found on Earth and that it can be solid or liquid.</td>
<td>ESS2.C: The Roles of Water in Earth’s Surface Processes Water is found in the ocean, rivers, lakes, and ponds. Water exists as solid ice and in liquid form.</td>
</tr>
<tr>
<td>2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.</td>
<td>PS1.A: Structure and Properties of Matter Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties.</td>
</tr>
<tr>
<td>2-PS1-2. Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.</td>
<td>PS1.A: Structure and Properties of Matter Different properties are suited to different purposes.</td>
</tr>
</tbody>
</table>
| 2-PS1-3. Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object. | PS1.A: Structure and Properties of Matter
A great variety of objects can be built up from a small set of pieces. |
|---|---|
| 2-PS1-4. Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. | PS1.B: Chemical Reactions
Heating or cooling a substance may cause changes that can be observed. Sometimes these changes are reversible, and sometimes they are not. |
| K-2-ETS1-1. Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. | ETS1.A: Defining and Delimiting Engineering Problems
A situation that people want to change or create can be approached as a problem to be solved through engineering. Asking questions, making observations, and gathering information are helpful in thinking about problems. Before beginning to design a solution, it is important to clearly understand the problem. |
| K-2-ETS1-2. Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. | ETS1.B: Developing Possible Solutions
Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. |
| K-2-ETS1-2. Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem. | ETS1.C: Optimizing the Design Solution
Because there is always more than one possible solution to a problem, it is useful to compare and test designs. |
Third Grade

<table>
<thead>
<tr>
<th>Performance Standard</th>
<th>DCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-LS1-1. Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.</td>
<td>LS1.B: Growth and Development of Organisms Reproduction is essential to the continued existence of every kind of organism. Plants and animals have unique and diverse life cycles.</td>
</tr>
<tr>
<td>3-LS2-1. Construct an argument that some animals form groups that help members survive.</td>
<td>LS2.D: Social Interactions and Group Behavior Being part of a group helps animals obtain food, defend themselves, and cope with changes. Groups may serve different functions and vary dramatically in size (Note: Moved from K–2).</td>
</tr>
<tr>
<td>3-LS3-1. Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.</td>
<td>LS3.A: Inheritance of Traits Many characteristics of organisms are inherited from their parents. LS3.B: Variation of Traits Different organisms vary in how they look and function because they have different inherited information.</td>
</tr>
<tr>
<td>3-LS3-2. Use evidence to support the explanation that traits can be influenced by the environment.</td>
<td>LS3.A: Inheritance of Traits Other characteristics result from individuals’ interactions with the environment, which can range from diet to learning. Many characteristics involve both inheritance and environment. LS3.B: Variation of Traits The environment also affects the traits that an organism develops.</td>
</tr>
<tr>
<td>3-LS4-1. Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.</td>
<td>LS2.C: Ecosystem Dynamics, Functioning, and Resilience When the environment changes in ways that affect a place’s physical characteristics, temperature, or availability of resources, some organisms survive and reproduce, others move to new locations, yet others move into the transformed environment, and some die. LS4.A: Evidence of Common Ancestry and Diversity Some kinds of plants and animals that once lived on Earth are no longer found anywhere. (Note: moved from K-2) Fossils provide evidence about the types of organisms that lived</td>
</tr>
</tbody>
</table>
long ago and also about the nature of their environments.

| 3-LS4-2. Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. | LS4.B: Natural Selection
Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing. |
|---|---|
| 3-LS4-3. Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. | LS4.C: Adaptation
For any particular environment, some kinds of organisms survive well, some survive less well, and some cannot survive at all. |
| 3-LS4-4. Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change. | LS4.D: Biodiversity and Humans
Populations live in a variety of habitats, and change in those habitats affects the organisms living there. |
| 3-ESS2-1. Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. | ESS2.D: Weather and Climate
Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next. |
| 3-ESS2-2. Obtain and combine information to describe climates in different regions of the world. | ESS2.D: Weather and Climate
Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years. |
| 3-ESS3-1. Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard. | ESS3.B: Natural Hazards
A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts. |
| 3-PS2-1. Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. | PS2.A: Forces and Motion
Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object’s speed or direction of motion. |
| | PS2.B: Types of Interactions |
Objects in contact exert forces on each other.

| 3-PS2-2. Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion. | PS2.A: Forces and Motion
The patterns of an object’s motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. |
| 3-PS2-3. Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. | PS2.B: Types of Interactions
Electric, and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other. |
| 3-PS2-4. Define a simple design problem that can be solved by applying scientific ideas about magnets. | |
| 3-5-ETS1-1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. | ETS1.A: Defining and Delimiting Engineering Problems
Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. |
| 3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. | ETS1.B: Developing Possible Solutions
Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. |
| 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. | ETS1.A: Defining and Delimiting Engineering Problems
Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved.
ETS1.C: Optimizing the Design Solution
Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the |
Fourth Grade

<table>
<thead>
<tr>
<th>Performance Standard</th>
<th>DCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-LS1-1. Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.</td>
<td>LS1.A: Structure and Function Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.</td>
</tr>
<tr>
<td>4-LS1-2. Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.</td>
<td>LS1.D: Information Processing Different sense receptors are specialized for particular kinds of information, which may be then processed by the animal’s brain. Animals are able to use their perceptions and memories to guide their actions.</td>
</tr>
<tr>
<td>4-ESS1-1. Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.</td>
<td>ESS1.C: The History of Planet Earth Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed.</td>
</tr>
<tr>
<td>4-ESS2-1. Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.</td>
<td>ESS2.A: Earth Materials and Systems Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. ESS2.E: Biogeology Living things affect the physical characteristics of their regions.</td>
</tr>
<tr>
<td>4-ESS2-2. Analyze and interpret data from maps to describe patterns of Earth’s features.</td>
<td>ESS2.B: Plate Tectonics and Large-Scale System Interactions The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of</td>
</tr>
</tbody>
</table>
| 4-ESS3-1. Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment. | ESS3.A: Natural Resources
Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not. |
|---|---|
| 4-ESS3-2. Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans. | ESS3.B: Natural Hazards
A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (4-ESS3-2) |
| 4-PS3-1. Use evidence to construct an explanation relating the speed of an object to the energy of that object. | PS3.A: Definitions of Energy
The faster a given object is moving, the more energy it possesses. |
| 4-PS3-2. Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. | PS3.A: Definitions of Energy
Energy can be moved from place to place by moving objects or through sound, light, or electric currents. (4-PS3-2),(4-PS3-3)
PS3.B: Conservation of Energy and Energy Transfer
Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. (4-PS3-2),(4-PS3-3)
Light also transfers energy from place to place. (4-PS3-2)
Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. (4-PS3-2),(4-PS3-4) |
| 4-PS3-3. Ask questions and predict outcomes about the changes in energy that occur when objects collide. | PS3.B: Conservation of Energy and Energy Transfer (see above)
PS3.C: Relationship Between Energy and Forces
When objects collide, the contact forces transfer energy so as to |
| 4-PS3-4. Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. | change the objects’ motions. | PS3.B: Conservation of Energy and Energy Transfer (see above)
PS3.D: Energy in Chemical Processes and Everyday Life
The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. |
|---|---|---|
| 4-PS4-1. Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. | PS4.A: Wave Properties
Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; it does not move in the direction of the wave except when the water meets the beach.
Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks). | |
| 4-PS4-2. Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. | PS4.B: Electromagnetic Radiation
An object can be seen when light reflected from its surface enters the eyes. | |
| 4-PS4-3. Generate and compare multiple solutions that use patterns to transfer information. | PS4.C: Information Technologies and Instrumentation
Digitized information transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. | |
| 3-5-ETS1-1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. | ETS1.A: Defining and Delimiting Engineering Problems
Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. | |
| 3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. | ETS1.B: Developing Possible Solutions
Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. |
|---|---|
| 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. | ETS1.A: Defining and Delimiting Engineering Problems
Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved.
ETS1.C: Optimizing the Design Solution
Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. |
Fifth Grade

| **5-LS1-1.** Support an argument that plants get the materials they need for growth chiefly from air and water. | **LS1.C:** Organization for Matter and Energy Flow in Organisms
Plants acquire their material for growth chiefly from air and water. |
| --- | --- |
| **5-LS2-1.** Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. | **LS2.A:** Interdependent Relationships in Ecosystems
The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as “decomposers.” Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem. **LS2.B:** Cycles of Matter and Energy Transfer in Ecosystems
Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment. (5-LS2-1) |
| **5-ESS1-1.** Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth. | **ESS1.A:** The Universe and its Stars
The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth. |
| **5-ESS1-2.** Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. | **ESS1.B:** Earth and the Solar System
The orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth about an axis between its North and South poles, cause observable patterns. These include day and night; daily changes in the length and direction of shadows; and different positions of the sun, moon, and stars at different times of the day, month, and year. |
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-ESS2-1. Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.</td>
<td>ESS2.A: Earth Materials and Systems Earth’s major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth’s surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather.</td>
</tr>
<tr>
<td>5-ESS2-2. Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.</td>
<td>ESS2.C: The Roles of Water in Earth’s Surface Processes Nearly all of Earth’s available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere.</td>
</tr>
<tr>
<td>5-ESS3-1. Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.</td>
<td>ESS3.C: Human Impacts on Earth Systems Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth’s resources and environments.</td>
</tr>
<tr>
<td>5-PS1-1. Develop a model to describe that matter is made of particles too small to be seen.</td>
<td>PS1.A: Structure and Properties of Matter Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model shows that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon; the effects of air on larger particles or objects.</td>
</tr>
<tr>
<td>5-PS1-2. Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.</td>
<td>PS1.A: Structure and Properties of Matter The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. PS1.B: Chemical Reactions No matter what reaction or change in properties occurs, the total weight of the substances does not change.</td>
</tr>
</tbody>
</table>
| **5-PS1-3.** Make observations and measurements to identify materials based on their properties. | **PS1.A: Structure and Properties of Matter** Measurements of a variety of properties can be used to identify
| **5-PS1-4.** Conduct an investigation to determine whether the mixing of two or more substances results in new substances. | **PS1.B: Chemical Reactions**
When two or more different substances are mixed, a new substance with different properties may be formed. |
| --- | --- |
| **5-PS2-1** Support an argument that the gravitational force exerted by Earth on objects is directed down. | **PS2.B: Types of Interactions**
The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center. |
| **5-PS3-1.** Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun. | **PS3.D: Energy in Chemical Processes and Everyday Life**
The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). |
| **3-5-ETS1-1.** Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. | **ETS1.A: Defining and Delimiting Engineering Problems**
Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. |
| **3-5-ETS1-2.** Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. | **ETS1.B: Developing Possible Solutions**
Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. |
| **3-5-ETS1-3.** Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. | **ETS1.A: Defining and Delimiting Engineering Problems**
Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. **ETS1.C: Optimizing the Design Solution**
Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. |
Sixth Grade (integrated)

| MS-LS1-1. Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. | LS1.A: Structure and Function
All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular). |
| MS-LS1-2. Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function. | LS1.A: Structure and Function
Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell. |
| MS-LS1-3. Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells. | LS1.A: Structure and Function
In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions. |
| MS-LS1-4. Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. | LS1.B: Growth and Development of Organisms
Animals engage in characteristic behaviors that increase the odds of reproduction. Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction. |
| MS-LS1-5. Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. | LS1.B: Growth and Development of Organisms
Genetic factors as well as local conditions affect the growth of the adult plant. (MS-LS1-5) |
| MS-LS1-8. Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories. | LS1.D: Information Processing
Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain. The signals are then processed in the brain, resulting in immediate behaviors or memories. |
| MS-LS3-2. Develop and use a model to describe why asexual reproduction results in offspring with | LS1.B: Growth and Development of Organisms
Organisms reproduce, either sexually or asexually, and transfer their |
| Identical genetic information and sexual reproduction results in offspring with genetic variation. | Genetic information to their offspring.
LS3.A: Inheritance of Traits
Variations of inherited traits between parent and offspring arise from genetic differences that result from the subset of chromosomes (and therefore genes) inherited.
LS3.B: Variation of Traits
In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ from each other. |
|---|---|
| **MS-ESS2-4.** Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity. | **ESS2.C: The Roles of Water in Earth’s Surface Processes**
Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation, condensation and crystallization, and precipitation, as well as downhill flows on land. Global movements of water and its changes in form are propelled by sunlight and gravity. |
| **MS-ESS2-5.** Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions. | **ESS2.C: The Roles of Water in Earth’s Surface Processes**
The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns.
ESS2.D: Weather and Climate
Because these patterns are so complex, weather can only be predicted probabilistically. |
| **MS-ESS2-6.** Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. | **ESS2.C: The Roles of Water in Earth’s Surface Processes**
Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents.
ESS2.D: Weather and Climate
Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric conditions. |
flow patterns. The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents.

MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

ESS3.C: Human Impacts on Earth Systems
Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth’s environments can have different impacts (negative and positive) for different living things.

MS-ESS3-5. Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

ESS3.D: Global Climate Change
Human activities, such as the release of greenhouse gases from burning fossil fuels, are major factors in the current rise in Earth’s mean surface temperature (global warming). Reducing the level of climate change and reducing human vulnerability to whatever climate changes do occur depend on the understanding of climate science, engineering capabilities, and other kinds of knowledge, such as understanding of human behavior and on applying that knowledge wisely in decisions and activities.

MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

PS3.A: Definitions of Energy
Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present.

PS3.B: Conservation of Energy and Energy Transfer
Energy is spontaneously transferred out of hotter regions or objects and into colder ones.

MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

PS3.A: Definitions of Energy (see above)
PS3.B: Conservation of Energy and Energy Transfer
The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment.

MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, there is inevitably
an object changes, energy is transferred to or from the object.

some other change in energy at the same time.

| MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. | ETS1.A: Defining and Delimiting Engineering Problems
The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions. |
| MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. | ETS1.B: Developing Possible Solutions
A solution needs to be tested, and then modified on the basis of the test results, in order to improve it.
There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. |
| MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. | ETS1.B: Developing Possible Solutions
There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem.
Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors.
ETS1.C: Optimizing the Design Solution
Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of those characteristics may be incorporated into the new design. |
| MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. | ETS1.B: Developing Possible Solutions
A solution needs to be tested, and then modified on the basis of the test results, in order to improve it.
Models of all kinds are important for testing solutions.
ETS1.C: Optimizing the Design Solution
The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. |