|EEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11,

Concise Papers_

Generalized Analytic Rule Extraction
for Feedforward Neural Networks

Amit Gupta,
Sang Park, Member, IEEE, and
Siuwa M. Lam

Abstract—This paper suggests the “input-Network-Training-Output-Extraction-
Knowledge” framework to classify existing rule extraction algorithms for
feedforward neural networks. Based on the suggested framework, we identify the
major practices of existing algorithms as relying on the technique of generate and
test, which leads to exponential complexity, relying on specialized network
structure and training atgorithms, which leads to fimited applications and reliance
on the interpretation of hidden nodes, which leads to proliferation of classification
rules and their incomprehensibility. In order to generalize the applicability of rule
extraction, we propose the rule extraction algorithm Generalized Analytic Rule
Extraction (GLARE), and demenstrate its efficacy by comparing it with neural
networks per se and the popular rule exiraction program for decision trees, C4.5.

Index Terms—Classification, neural network, rule extraction.

+

1 INTRODUCTION

MANY recent studies have confirmed the effectiveness of neural
networks for a variety of applications including classification
problems, computer vision, time series analysis, and natural
language recognition [4], [5], [9], [17], [18]. Despite the advantages
of neural networks such as prediction accuracy, robustness, no
requirements on data distribution assumptions, and model-free
estimation procedure, there are still difficulties in determining the
suitable network architecture, training parameters, and explaining
the training results. This paper investigates rule extraction as a
remedy for solving the problem of lack of explanation power in
neural networks. The basic procedure of rule extraction involves
submitting connection weights from a trained neural network into
a rule extraction algorithm, and the algorithm generates output in
the format of ‘

If (my op oy [or v or .])
and/or (22 op va [or v or L))

andjor ..., then class,,

where ; is the input attribute 1, v; is the value j for attribute i, the
expressions in square brackets are optional, and op is one of the
relational operators =, <, », <, >, or <> Extracted rules can
explain the classification procedure of the neural network, and
shed light on the relative importance of input attributes as well as
their relationship on determining a case’s class affiliation. In

o A Gupta is with Andersen Consulting, 3773 Willow Road, Northbrook,
1L 60062. E-mail: amit.gupta@ac.com.

o S. Park is with the Department of Industrial Management, KAIST, 373-1
Kusong-Dong, Yusong-Gu, Taejon, Korea 305-701.
E-mail: sangpark@cais.kaist.ac kr.

e S.M. Lam is with the Department of Management Information Science,
California State University-Sacramento, 6000 | Street, Sacramento, CA
95819-6088. E-mail: lnmsn@csus.edu.

Manuscript received 12 June 1997; revised 4 Dec. 1998.
For information on obtaining veprints of this article, please send e-mail to:
thie@computer.org, and reference IEEECS Log Number 105247.

1041-4347/99/$10.00 € 1999 IEEE

NO. 6, NOVEMBER/DECEMBER 1999 985

addition to the explanation capability, extracted rules may also
have the merit of predicting new cases more accurately than the
neural network per se. The above conjecture is based on the
principle of minimum description length for theory formulation. A
“good” rule extraction algorithm should compress and transform
the set of distributed conneciion weights from the neural network
into a set of succinct, essential, and comprehensible rules for
explanation and prediction purposes.

The next section of this paper presents an “Input-Network-
Training-Output-Extraction-Knowledge” framework to classify
existing rule extraction algorithms. The examination of existing
rule extraction algorithms identifies several common practices,
which motivates the devolopment of a new rule extraction
algorithm GeneraLized Analytic Rule Lxtraction (GLARE). Sec-
tion 3 describes the specifications of GLARE using the
classification framewark presented i Section 2. An illustrative
example for GLARE is given in Section 4. In order to
demonstrate the efficacy of GLARE, experiments are carried
out to compare the rule performance of GLARE with neural
networks per se, as well as with C4.5, which is a popular rule
extraction algorithm for decision trees. Section 5 oxplains the
experimental methodology. Section 6 presents and discusses the
experimental results. The last section concludes the paper by
discussing some future directions for this research area.

2 A CLASSIFICATION FRAMEWORK FOR RULE
EXTRACTION ALGORITHMS

Because of the significance of the “lack of explanation” problem in
neural networks, we have seen more and more rule exiraction
algorithms in the literature, There exists the need to organize rule
extraction algorithms into perspectives using some classification
schemes. Andrews et al. [1] are among the first to propose a scheme,
which utilizes five factors to classify rule extraction algorithms
including the expressive power of extracted rule, translucency of
extraction technique, utilization of specialized training regimes,
quality of extracted rules, and algerithmic complexity. However, the
suggested scheme has overlapping and missing areas, For example,
the expressive power of rules can be considered as a partial indicator
of quality of rules, and there is no coverage on algorithms which
tequire specialized network structure and domain knowledge. After
examining different rule extraction algorithms, we propose the
classification framework “Input-Network-Training-Output-Extrac-
tion-Knowledge.” The remaining of this section will explain the
framework and identify some major practices in existing rule
extraction algorithms.

Fig. 1 summarizes the characteristics of some existing rule
extraction algorithms in terms of the proposed classification
framework. Network input, the first component of the framework,
concerns abeut the input requirement to the network. Input
attributes can be boolean, nominal, or continuous; and there can be
the input requirement of domain knowledge. Network structure
considers whether an algorithm requires specialized network
architecture to facilitate the rule extraction process, Training
algorithm considers whether a rule extraction algorithm requires
specialized training methods. Network output considers whether
the output from the trained network has to be preprocessed before
submitting as input to the rule extraction process. Bxtraction
process considers the methodology as well as the computational
complexity of an algorithm. There are two main types of extraction
methodologies: Generate and test, which is search based; and
analytic, which is nonsearch based. The analytic appitoach extracts
rules by directly interpreting the strengths of connection weights in

http://nmif.guptnQac.com

286 |IEFE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 1999

(shegial

‘ MNefwork (

‘ Sruchre;

‘ RuielNef[9] |

‘ Input |__ g;ﬁﬁﬁi w| Cutpit |y [Extraction] e | Knowledge ‘

[;;:’;T:;fm & *Shecial *ienerate & s FPropositions ‘

[o] j- Tregimert Test: Logic, J

‘ BWEI 15] fo Traimed Subset[6] 2681015207

D eDemain Nefwork: Mo Raf 207 » Direct ,

A i Training RXT3,16] ETla} IMagping ‘

| Eowledgs: | i viA[1e] between et |
EBANN20] & . pd |

i Rule exfraction and Cufpd

! wSpenialized as search3] Modzs: . ‘

Traiming RXJ&, 16} FauleX]2]

{ Methods: s Analyfic: o tilize Fidden ‘

{‘ R, 16] FuleXT2T Modzs in Fules:

! RuieXT2} : Subsetf] ‘

/ FBANN{20F MNoflaf 207

Fig. 1. The framework for classifying rute extraction atgorithms.

a trained network. Search-based techniques usually imply high
computation complexity of the rule extraction algorithms. The
degree of complexity generally increases exponentially as a factor of
the numbers of input and hidden nodes. The complexity problem
can be alleviated by adopting heuristics [6] to constrain the search
space. Extracted knowledge, the last component in the classification
framework, considers the representation, quantity, and accuracy of
extracted knowledge. The representation of extracted knowledge
canbe classified as: Symbolic rules vs. numeric function, conjunctive
vs. disjunctive in rules, and including hidden nodes vs. direct
mapping between input attributes and classes in extracted knowl-
edge. In terms of comprehensibility, a direct mapping between
input attributes and classes is easier to trace and apply than rules
including hidden nodes. The quantity as a consideration factor for
knowledge refers to the number of extracted rules or functions.
Generally, without compromising the prediction accuracy, fewer
rules and functions imply easier interpretation and application. The
accuracy of knowledge, the last consideration factor for extracted
knowledge, indicates the prediction accuracy of rules or functions as
applied to new cases.

The examination of existing rule extraction algorithms using the
“Input-Network-Training-Output-Extraction-Knowledge” frame-
work reveals three major practices of rule extraction. The first
practlice is the computational complexity caused by the generate and
tegt extraction technique. The general factic in generate and test
technique involves establishing relationships between input and
hidden nodes, then relationships between hidden and output nodes,
and finally relationships between input and output nodes by
merging the first two sets of relationships. The generate and test
approach is computationally expensive, which renders it unsuitable
for real-time applications. We advocate the analytic approach,
extracting knowledge by directly interpreting the strengths of
connection weights, as a better approach than generate and test for
rule extraction. The second practice concerns about the specialized

network structure and training methods for extraction algorithms,
There are two major reasons for adopting specialized schemes,
either to customize the notwork to a specific problem domain [9], or
to facilitate the extraction process [2], {16], [20]. For example, by
modifying the activation function into a threshold function, NofM
[20] can focus on interpreting the magnitude of connection weights,
and ignore the strengths of nodes’ output. While this tactic can
simplify the extraction process, it deteriorates the learning power of
anetwork by disabling partially activated hidden nodes. We prefer
the utilization of standard network structure and training methods
in rule extraction, so as to enhance the generalization power of the
algorithms, The last practice involves the existence of hidden nodes
in the final rule set. We prefer the approach of direct mapping
between input and output nodes, so as to enhance the comprehen-
sibility and applicability of rules. Before we turn to the rule
extraction algorithm proposed in this paper, accuracy as a factor for
cvaluating extracted rules deserves a few words. Fidelity, which is
defined as the exactness between the rules’ and the network’s
classification behavior, has been suggested as a criterion of rule
quality 2], [3]. Fidlelity is a desirable trait for rule cxtraction
algorithms to possess if the trained network predicts accurately. On
the other hand, for an inaccurate network, we challenge the rule
extraction algorithm to compress the knowledge by eliminating
inaccurate, irrelevant, or nonessential information. To evaluate the
quality of rules, we suggest that rules should predict as accurately as
or more accurately than the network per se.

3 SPECIFICATIONS OF GLARE

This scction describes the proposed rule extraction algorithm
GLARE. Fig. 2 summarizes the specifications of GLARF based
on the “Input-Network-Training-Output-Extraction-Knowledge”
framework. GLARE is designed for networks with only one hidden
tayer. The next section provides an illustrative example for the

|EEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 6, NOVEMBER/DECEMBER 1999

Input: .

C ontinuoie attributes have to be centared and converted into nom ial,
then boolgan attributes.

e No domain knowledge required.
Network Siructare:

o Standard feedforward newral network.
® One hidden layet.

987

Tratuing Algorithme:
¢ Siandard backpropagation algorniben.
Network Quipnt as Input to Extraciion:

Rale Extraction Process:

NWIH = a.

node m.

output node .
based on ATTE from step 5.

Ouipnt Ro les:
e Format If

Thenn class=10.

di ghunictives,

® Norestriction on nenber of ldden nodes.

e Nospecial ireatinent to the set of connection weights from the trained netw ok,

Fot each output node m (each class in the data set), dothe following

1. Create RWIH, which are rankings of ail input nindes 2 {eategory j of input
attritbute i, 7 isthe total ingud attributes, 2] is the tolal category values for all
input attributes) to iddennode n (o= 1, 2, . N}, based on the magnitude of
connection weights from inpul nodes to hidden node nin descending order.

2. Create REWIH, which are reduced RWIH, from step 1, based on the param efer

3. Caleulate [ICH,) which ate importance index es for hidden noden to output

4. Create RWHO, whick: is the ranking of importatice of hidden nodes to outpul
twde m in descending order, baged on ITH,) from step 3.

5. Create ATTR whichis an N % 2 matrix consisting of REWIH, from step 2, and
adjusted based on RWHO_ from step 4. Irput nodes on the top rows and 1eft
coluymns in the ATTR are more influential for determining the cutput of the

6. Create RATTR whichis ani * 2 meteix consisting of elements-1, 1 or 0

T, Create the classifeation rule for node m, based on RATTR from step 6

atttibute 0 = category 0 o 1LAND
attribute 1 = category 2 ot 3ANMD .

* Symhbalie, one composite nie far each class, and eachrule as a corjunctive of

¢ The length of the conjunctive isthe man ber of input atititides, and digunctive {
contains no tote than the total categoriesin attrituted

Fig. 2. Bpecifications of Generalized Analytic Rule Extraction (GLARE).

algorithm. Fig. 3 provides an example for a fully connected and
feedforward neural network trained by backpropagation. For
clarity purposes, only part of the connection weights are shown.
Xjj represents category value j of input attribute 1. X equals to 1 (0)
if attribute i has (does not have) category value j. Xi is the total
number of input attributes, and Xj is the total number of category
values for all attributes. Note that different attributes may have
different numbers of category values. H, is hidden node n where
n=10,1,..,N, and N is the total humber of hidden nodes. C,, is
output node m representing class m in the data set. For each
output class m, GLARE performs the following seven steps for
extracting the composite rule:

Step (1): Create RWIH,,

For each hidden node n in the network, create ranking RWIH,.
RWIH,, is the ranking of all input nodes based on the descending

order of absolute values of connection weights between input
nodes to hidden node n. A positive or negative sign is added to
each input node in RWIH, to indicate whether the connection
weight between the input node and hidden node is positive or
negative, The output of step (1) is a set of rankings consisting of N
different RWIN,,.

Step (2): Create RRWITIL,.

This step creates RRWIH,, reduced RWIIL,, by reducing the length
of RWIH,, from step (1) as determined by the parameter NWIIL
NWIH means the number of adepted weights between input and
hidden layer. Set the parameter NWIH to ¢ where 15 a < 2.
Some heuristics for choosing NWIH will be discussed in Section 6.
Then, the first a input nodes in RWIH, will be retained for further
processing, and remaining input nodes in RWIH, will be deleted.
The output of this step is a set of N different RRWIH, rankings.

588

-1 A3

A »_mas'__H\\
T 01
T
R /rlia/’/'
0 .@
4; A
A
T
T
R
1
A
T
T
R
2

Zy

Fig. 3. A trained feedforward neural network.

The purpose of this step is to select several largest connection
weights for rule extraction.

Step (3): Caleulate impoviance indexes for hidden nodes.

Resubmit all training cases of class m to the trained network.
Notice that the network must be trained before the resubmission.
For each hidden node I, record the activation level of each
resubmitted training case, calculate the average activation level,
then calculate the importance index using the following equation:

H(Hmn) = ABS(AALHJU * WHOum) (1)

where:

1E(I1,,,) is the importance index of hidden node n to output
node m,

e ABS{() indicates absolute value,

e AAT,,, is the average activation level of hidden node n for
training cases of class m, and

o WHO,, is the connection weight from hidden node n to

output node m,

The purpose of this step is to take into consideration the partial
activation level of a hidden node, and thus preserve the learning
power of partially activated hidden nodes, The output of step (3) is
numeric values TI(H,,) for all hidden nodes indicating the
influential power of each hidden node in determining the output
for output node m.

Step (4): Create RWHO,,.

Create the ranking RWHQO,,,. RWHO,, is the ranking of ali hidden
nodes for output node C, based on the descending order of the
importance indexes from step (3). A positive or negative sign is

IEFE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11, NO. 8, NOVEMBER/DECEMBER 1999

-

@)
@)

-

102

Hn

Cm

added to each hidden node in RWHOQ,, to indicate whether the
connection weight between the hidden node and output node is
positive or negative. The output of step (4) is a ranking of hidden
nodes based an their importance on determining the output for
output node m.

Step (5); Create ATIR,

RWHO,, (one ranking) from step (4) and REWIIT, (N rankings)
from step (2) are used to construct an N x a mairix ATTR. ATTR
consists of RRWIH, reordered and adjusted based on RWHO,,.
First, we reorder RRWIH,, from step (2} according to the order of
hidden nodes in RWHO,,. Second, for hidden nodes with negative
signs in RWIO,, we flip the sign of all input nodes in the
corresponding RRWIH,,. The rationale of flipping the signs of Xs is
explained as follows. For a hidden node which has a negative
connection weight to an output node, the output of that hidden
node must be low for the output node to generate a high output.
Then, in order to have a low output from that hidden node, those
input nodes which have negative connection weights to the hidden
node must have the input value 1 and those input nodes which
have positive connection weights to the hidden node must have
the input value 0. This reasoning demands that the signs of all
input nodes be reversed for hidden nodes with negative connec-
ton weights to the output node. The output of step (5) is a matrix
ATTR in which the important input nodes for class m cccupy the
top rows and left columns. An +X;;(—Xy) in ATTR indicates that in
order for output node C,, to have a high output (so that a certain
case will be classified as class m), input node Xy must have the
input value 1 ().

IEEE TRANSACTIONS ON KNCWLEDGE AND DATA ENGINEERING, VOL. 11,

Step (6): Create RATTR.

Create an i x 3] matrix RATTR based on the ATTR from step (3).
Following the directions of top to down and left to right, we use
elements in ATTR to determine element values in RATTR. RATTR
is initialized to 0. Then, an +X;(—X;) in ATTR will set category j of
attribute i in RATTR to 1{—1). Once an element in RATTR is set, it
will not be reset. In other words, less important elements in ATTR
have only residual power to determine element values in RATTR.
The output of step (6) is a matrix RATTR that can be used fo
construct the classification rule for class m.

Step (7): Create the classification vule for class m.

Based on clement values in RATTR, we construct a composite rule
for class m. An element of 1 (—1) in RATTR indicates that attribute
i must have {must not have) category value j for class m. An
element of ¢ indicates that it does not matter whether attribute i
has category value j. The current implementation of GLARE treats
0 as 1. The format of the extracted rule is:

If attribute ¢ = category 0 or 1 AND
attribute 1 = category 2 or 3 AND ...
Then class = (.

Each rule is a conjunctive of disjunctives. The length of the
conjunctive is the number of input attributes, and disjunctive i
contains no more than the total categories in attribute i.

The application order of rules to a new case can be very
important for the correct classification of the case. The current
implementation is to apply the most restrictive rule first, ie., the
rule with the most —1s in the RATTR matrix. For new cascs to
which no rule can be applied, the majority class in the training set
is used as the default class. To avoid noise, it may not be necessary
for a new case to match all attribute values in a rule in order to be
labeled as the class indicated by the rule. The GLARE algorithm
has a parameter NMATTR that specifies the minimum number of
attributes a case must match in order to be classified as the class for
the rule. Tn Section 6, we will discuss some heuristics for
determining NMATTR,

4 AN ILLUSTRATIVE EXAMPLE

The network in Fig. 3 has nine ivput nodes (i=0,1,2, and j =
0,1,2 for each i), four hidden nedes {n=10,1,2,3), and three
output nodes (m =0, 1, 2). To extract the composite rule for class 1,
GLARE carrics out the foltowing steps:

Step (1): Create RWIH,.

Note that the conncction weights for Hy, Hy, and Hj are not shown
in Fig. 1, and are assumed to gencrate RWIH,, as follows:

BRWIHy: +X» +Xu —-Xo +Xie +Xp
+Xoe —Xoo +Xn +Xw

RWIN : +Xe0 +Xu +Xo 4-Xw —Xn
X X —Xm X

RWIHy : +Xp9 —Xoz +Xn — X +Xp
—Xn Xy —Xie +Xn

RWIH;: =Xy —-X5 —Xoo ~Xpp +Xn
+X0 —Xee —Xm X

Step (2): Create RRW 1],

Suppose we set NWIL to 2. The following are the RRWTH, for
output node 0:

RRWIIT, : +- X X

NO. 6, NOVEMBER/DECEMBER 1999 9849
RRWIH, : +Xp + X
RRWIH: : Xy — Xo2
RRWIH:{ B —ng - Xgl.

Step (3): Calculate importance indexes for hidden nodes.

M(Huo), 1I(Hg), T{ge}, and TI(Ilp;) are caleulated using (1).
Suppose the calculated values are II{Hg) = 10.5,1I(Hp) = 19.8,
II(H(]Q) = 1.8, and II(IIUH) =4.5,

Step (4): Create RW HO,,.

Based on the importance indexes from step (3), the following
RWIIQy is constructed:

RWHOQ H +H| - Hg -+ H2 - H;{.

Note that we attach the positive sign to 11, and Hp, and the
negative sign to Hy and Hj, based on the signs of connection
weights from those hidden nodes to Cy. The above RWHO,
indicates that H; is most important for determining the output
value of Cy, followed by Wy, then [1y; and Hj is the least important.

Step (5% Crente ATTR,

Using RWIO, from step {4) and RRWIH,;, RRWIMH,;, RRWII,,
RRWIH; from step (2), ATTR is generated as:

column
0 1
0 +Xm +Xn
row 1 — ng - XU
2 +Xon — Koz
3 +Xos + X,

Notice that in the above ATTR, we put RRWIH, in row 0,
RRWIH, in row 1, RRWIH, in row 2, and RRWIH; in row 3, as
demanded by the order of hidden nodes in RWIIO,. We also flip
the signs of the input nodes in RRWIH, and RRWIH, because II,
and H; have negative signs in RWHOq.

Step (6): Create RATTR.
Using ATTR from step (5), the following RATTR is constructed:

Categories(j}
0 1 2
01 1 -1
Attributes(i) 1 0 -1 0
2 0 1 -1

The procedure of filling the above RATTR is as follows. We start
with element 0 in row 0 from ATTR. Since that element is +X;;, we
set category 0 of attribute 0 in RATTR to 1. Then, we use element 1
in row 0 from ATTR, and since that element is +Xg, we set
category 1 of atiribute 0 to 1. The filling procedure will go on until
we exhaust all clements in ATTR. Notice that since element 0 in
row 1 from ATTR has set category 2 of attribute 2 to —1, element 0
in row 3 cannot reset that to 1, according to the residual power
principle for clements in ATTR.

Step (7): Create the classification rule for class m.

Using the RATTR from step (6), the following rule for class 0 is
constructed:

If attribute 0 = Oor 1 and
attribute 1 == 1 or 2 and
attribute 2 = Qor i

Then class = 0.

9490

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11,

NG, 6, NOVEMBER/DECEMBER 1999

TABLE 1
Correct Classification Rates (in Percentages) for Training Sets and Test Seis

')
Tree Tree-Ruls Meural Metwaork GLARE
Data Set* Ttaining Test Traning Test Training . Test Traning Test
Post-n 7241 7143 7241 7143 8193 6129 7241 7143
Balloon -n 54,29 6667 3571 50.00 TRAT 8647 TE.57 100.00
Hepatitis -n 2864 7857 B1.82 &4.2% 173 71143 2409 8571
BUPA -c 200 5833 82.00 5333 88.00 75.00 -- --
Glass - ¢ 2600 7500 9% 00 66.67 $8.00 7917 - -
Inis - ¢ 9706 752 §7.06 9792 100,00 %583 - -
BURA -p 00 75.00 £0.00 41,67 50,00 50.00 52.00 5833
Glass - 80.00 E7.50 9000 8333 $2.00 75.00 78.00 8333
Ins -p 6177 £0.42 9412 9375 9706 5375 9314 9375
BUES - g g0.00 62.50 7200 3833 .00 5833 .00 86,67
Glass - g 78.00 62,50 B6.00 5833 100.00 70.83 Moo 7917
Tng - g B0.78 €250 62.75 58.33 93.04 9792 Ba.24 9375

* n means data sets with nominal atiribites.
© means data sets with continuous atiributes.
p means converting continuous atiributes into nominal atribttes using p scaling.
q means converting continuous attributes into nominal attributes using q scaling.

5 EXPERIMENTAL METHODOLOGY

The experiment adopted six data sets from the machine learning
databases [10] at the University of California at Irvine (UCI). The
Postoperative Patient (Post), Balloon (only the last data set in the
repository), and Hepatitis data sets have only nominal attributes.
The BUPA, Glass, and Tris data sets have only continuous
attributes. To avoid missing values, we deleted attributes with
missing vatues. For Hepatitis, only attributes 4, 5, 6,7, 8, 11, 12, 13,
14, 15, and 20 were used. For Glass, only atiributes 2, 3, 4, 5, 6, 7,
and 8 were used. To avoid uneven class distribution, we used only
classes 1 and 2 in the Glass data sct. Then, we randomly selected 74
cases from Hepatitis as well as from Glass for the experiment. The
ratio of training to test cases is 7:3 in each data set. To apply
GLARE, continuous attributes in the BUPA, Glass, and Iris data
sets have to be centered and converted into nominal attributes. We
developed two scaling methods, p scaling and ¢ scaling, for the
conversion. The method of p scaling is to assign attribute valnes
into five intervals of equal length along the line between the
minimum and maximum values for each atribute. The method of
¢ scaling is to assign the first greatest 20 percent attribute values
into category 0, the next greatest 20 percent into category 1, and so
on. After the conversion, there are 12 different data sets including
Post-n, Balloon-n, Hepatitis-n, BUPA-¢, Glass-c, Iris-c, BUPA-p,
Glass-p, Iris-p, BUPA-q, Glass-q, and Iris-q where n indicates
nominal attributes, ¢ indicates continuous attributes, p indicates
neminal attributes from p scaling, and q indicates nominal
attributes from g scaling. The following experimental procedure
was applied to each of the n, p, and q data sets:

I. Use the C4.5 program [13] to build 10 decision trees from
the training set. Decision trees are used to predict the test
sct. Record the best test set CCR (correct classification rate
as the percentage of correctly classified cases).

2, Apply the rule extraction procedure from C4.5 to decision
trees from step (1). C4.5 choosces the best tree from step (1)
based on predicted error rates. Classification rules ate
generated from the chosen tree. Rules are applied to the
training and test set. Record the test set CCR.

3. Convert nominal attributes into binary input attributes for
backpropagation training, Apply backpropagation [12] to
the training sci, and predict test set. Repeat the training 10
times with a new random set of initial weights for each
trial. Record the best test set CCR.

4. Apply GLARE to trained networks from step (3). Extracted
rules are used to predict the training and test set. Record
the best test set CCR.

The above experimental procedure was also applied to data sets
with continuous attributes except that step (4) was not carried out
since GLARE cannot be applied to continuous attributes. On the
other hand, step (2) was performed on data sets with continuous
attributes since C4.5 can perform threshold testing for continuous
attributes, which will test each midpoint between two adjacent
continuous attribute values to select the best threshold for
grouping continuous attributes into nominal attributes. The
number of hidden nodes is set at about 50 percent to 75 percent
of the number of input nodes. All backpropagation training were
executed in C, and have 1,000 cpochs, 0.5 learning rate, and 0
momentum rate.

6 EXPERIMENTAL RESULTS AND DISCUSSION

Table 1 records all fraining and test set CCRs for experimental
steps (1) to (4) described in Section 5. The discussion focuses on
test set CCRs. The test set results on nominal data sets (Post,
Ballon, Hepatits) show that GLARE achieves the same or higher
CCRs than the other methods. In Post data set, GLARE achieves a
CCR of 71.43 percent, which is the same as Tree and Tree-Rule, and

|EEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 11,

NO. 8, NOVEMBER/DECEMBER 1999

TABLE 2
Best Performance on Continuous Data Sets

991

. Data Set Tree-Rule

Meural Natworl: GLARE

Tree
BUPA 7500 - 5833-¢, 75.00 - ¢ 66.67 -
P q q
Glass 8750-p 8288-p 7917 -¢ 83.33-p
Iris 8792 -¢ 8792 -¢ 9792 -q 9375 -pg |
is higher than Neural Network per se. In Ballon and Hepatitis data REFERENCES
Sewff GLARE‘ achieves 100 percent and 85.71 percent respectively, [1] R. Andrews,). Diederich, and A.B. Tickle, “Survey and Critique of
which are higher than all other methods. Table 2 presents the best Techniques for Extracting Rules from Trained Artificial Neural Networks,”
performance on continuous data sets (BUPA, Glass, and Tris). In ol g””}{’["gge'&’“d jy;“”gff V“'-‘% “10~ % tPF’- ff73'3f39r Dec. (12995} ed I
o . Andrews and 5. Geva, “Rule Extraction from a Consttained Error
BUPA, the best performer .(75 percent) .lb Tree (p) and Neural Back Propagation MLP,” Proc. Fifth Australian Conf. Neural Nefworks, pp. 9-
Network (c). GLARE (q) achieves the medium result 66,67 percent. 12, 1994,
Tree-Rule has the lowest result 58.33 percent. In Glass, the best [3) M.W. Craven and).W. Shavlik, “Using Sampling and Queries to Lxtract
performer is Tree (p). GLARE (p) and Tree-Rule {(p) achieve the E;lrc;;n;f“g; "g;a_zl‘;e‘:}gng“"“l Networks,” Proe. 11th Int’l Conf. Maciine
same medium result of 83.88 percent. Neural network (c) has the 4] SE Decatur, “Application of Neural Networks to Terrain Classification,”
lowest of 79.17 percent. In Iris, Tree (c), Tree-Rule (c), and Neural gma In#'t Joint Conﬁthwmi Ngfworks, vol-1\1]. pp. 283-288, 1989. , ;
3 ; [5] . Dutta and S, Shekhar, “Bond-Rating: A Non-Conservative Application o
network (q) achieve the same re,su!t of 97.92 percent, and GLfARE 18 Neural Networks,” Proc. IEEE Intl Conf. Neural Networks, vol. 2, pp. 443-
4.17 percent lower than the majority. Among the three continuous 150, 1988.
data sets, GLARE cannot achieve the best results, and tree is [6] LM Fu, “Rule Generation from Neural Networks,” [EEE Ttans. Systems,
: Thi bed Man, and Cybernetics, vol. 24, no. 8, pp. 1,114-1,124, Aug, 1994.
always among Ithe best Performers This Phenom?non may be due (7) S Gallant, “Commcctionist Expert Systems,” Comm, ACH, vol. 31, pp. 152-
to the loss of information from converting continuous attributes 169, 1988,
into nominal attributes for GLARE. Overall, the experimental [8] H. Lu, R. Setiono, and H. Liu, “Effective Data Mining Using Neural
P . g Using
results show that GLARE outperforms other methods in nominal gﬁﬁwf’grgf’ IEEE Trans. Knowledge aud Data Eng., vol. 8, no. 6, pp- 957-961,
. v . .
data sets, but not in continuous data sets. As for the parameters 1o ¢ yrewfillan, M.C. Mozer, and P. Smolensky, “The Connectionist Scientist
NMATTR and NWIH in GLARE, our experience suggests their Game: Rule Extraction and Refinement in a Neural Network,” Proc. 13th
values be set at 50 percent to 80 percent of the maxima for the Annt, Conf. Cognitive Science Soc., pp. 424-430, 1991,) i
two values [lo] PM. Musphy and DW. Aha, UCI Repository of Machine Learning
' Datnbases, Dept. of Information and Computer Science, Univ, of California—
Irvine, 1997.
7 c [11] H. Narazaki, T. Watanabe, and M. Yamamoto, “Reorganizing Knowledge
ONCLUSION in Neural Networks: An Explanatory Mechanism for Neural Networks in
e Data Classification Problems,” TEEE Trans. Systems, Man, and Cybernetics,
This paper proposes an algorithm GLARE to extract classification part B: cybernetics, vol. 26, no. 1, pp. 107-117, 1996.
rules from feedforward and fully connected neural networks [t2] \Y\}Hll Pao, 11;1&;1'gptivc Patterns Recognition and Newral Networks, Addison-
. . R s esley, .
jcramed l?y baCka:Opagatmn' The major Char?CtenSt}cs of G].“ARE [13] J.R. Quinlan, C4.5: Pragrams for Machine Learning, Morgan Kaufmann 1993,
include its analytic approach for rule extraction, being applicable [14] 8. Ridella, G. Spereni, P. Trebina, and K. Zunine, “Pruning and Rule
to standard network structute and training method, and extracted Ex;raction Using Class Entropy,” Proc. 1IEEE Int'! Conf, Neural Networks,
. . . . vol. 1, pp. 250-256, 1993.
rules .as direct mapping between 1np,ut a,nd output n'od'es. [15] &. Sestito and T.5. Dillon, Awutomated Knowledge Acquisition, Prentice
Experimental results have shown GLARE's efficacy for prediction Hall, 1994,
comparing with neural networks per se and C4.5 in nominal [l6] R. Setiono and H. Liu, “Understanding Neural Networks via Rule
data sets. The “Input-Network-Training-Output-Exiraction- E;;"‘lcgt;%“' Proc. Int't Joint Conf. Artificial Intelligence, vol. 1, pp. 480-
Knowlf?dge” framework also ‘reveals' that numeric analysis for [171 K.Y. Tam and M.L. Kiang, “Managerial Applications of Neural Networks:
extraction process and numeric function as extracted knowledge The Caso of Bank Failute Predictions,” Management Scienice, vol. 38, pp. 926-
are underexplored. Recently, we have seen some efforts [11], [14 947, 1992.
in ih di P . ¥ 1 aVEE . []’ [.] [18] Z. Tang, C. de Almeida, and P, Fishwick, “Time Series Forecasting Using
in these directions. As neur‘?‘ networks ar.e mherenﬂy.numerlc’ Neural Networks vs. Box-Jenkins Methodology,” Proc. First Workshop
more research should be direcied at designing algorithms for Neural Networks: Academic/industrial/NASA/Defense, pp. 95-100, 1990.
numeric analysis and numeric representation for knowledge in [19] S.B. Thrun, “Bxtracting Provably Correct Rules from Artificial Neural
neural networks Networks,” Technical Report [ALTR-93-5, Inst. for Informatik [1I, Uni-
' versitat Borm, Germany, 1994.
[20] G.G. Towell and J.W. Shavlik, “The Extraction of Refined Rules from

Knowledge Based Neural Networks,” Machine Learning, vol. 131, pp. 71-
101, 1993

