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Abstract-This paper suggests the "lnpUt-NetwOik-Training-0ulput-Extract~~- 
Knowledge" framework to classify existing rule exlraction algorithms for 
feedloward neural networks. Based on the Suggested framework, we identify the 
major practices of existing algorithms as relying on the technique Of generate and 
test, which leads to exponential complexity, relying on specialized network 
structure and training algorithms, which leads to limited applications and rsliance 
on the interpretation ot hidden nodes, which leads to proliferation of classification 
ruies and their incomprehensibility. in order to generalize the applicability of rule 
extraction. we propose the rule extraction algorithm GeneraLized Analytic Rule 
Extraction (GLARE), and demonstrate its efficaoy by comparing it with neural 
networks per se and the popular rule extraction program for decision trees, C4.5. 

index Term-Ciassiticatian, neural network, rule extraction. 

+ 
1 INTRODUCTION 
MANY recent studies have confirmed the effectiveness of neural 
networks for a variety of applications including classification 
problems, computer vision, time series analysis, and natural 
language recognition [4], [5], [9], [17], [18]. Despite the advantages 
of neural networks such as prediction accuracy, robustness, no 
requirements on data distribution assumptions, and model-free 
estimation procedure, there are still difficulties in determining the 
suitable network architecture, training parameters, and explaining 
the training results. This paper investigates rule extraction as a 
remedy for solving the problem of lack of explanation power in 
neural networks. The basic procedure of rule extraction involves 
submitting connection weights from a trained neural network into 
a rule extraction algorithm, and the algorithm generates output in 
the format of 

If (Zi O p  011 [OT 1112 OT . . .I) 

an,d/or (a2 up 212, [or U22 op ...I ) 

andlor ... then class,,, 

where a, is the input attribute i, v,j is the valuc j for attribute i, the 
expressions in square brackets are optional, and op is one of the 
relational operators =, <, >, 5, >, or <>. Extracted rules can 
explain thc classification procedure of thc neural network, and 
shcd light on the relative importance of input attributes as well as 
their relationship on determining a case's class affiliation. hi 
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addition to the explanation capability, extracted rules may also 
have the merit of predicting new cases more accurately than the 
neural network per se. The above conjecture is based on the 
principle of minimum description length for theory formulation. A 
"good" rule extraction algorithm should compress and transform 
thc set of distributed connection weights from the neural network 
into a set of succinct, essential, and comprchensible rules for 
explanatinn and prediction purposes. 

The next section of this paper presents an "Input-Nctwork- 
Training-Output-Extraction-Knowledge" framework to classify 
existing rule extraction algorithms. The examination of existing 
rule extraction algorithms identifics several common practices, 
which motivates the devclnpmcnt of a new rule cxtraction 
algorithm GencraLized Analytic Rule Extraction (GLARE). Sec- 
tion 3 describes the specifications of GLARE using the 
classification framework presented in Section 2. An illustrative 
example for GLARE is given in Section 4. In order tu 
demonstrate the efficacy of GLARE, expcriments are carried 
out to compare the rule performance of GLARE with neural 
networks per se, as well as with C4.5, which is a popular rule 
extraction algorithm for decision trees. Section 5 cxplains the 
experimental methodology. Section 6 presents and discusses the 
experimental results. The last section concludes the paper by 
discussing some future directions for this research area. 

2 A CLASSIFICATION FRAMEWORK FOR RULE 
EXTRACTION ALGORITHMS 

Because of thc significance of the "lack of explanation" problem in 
neural networks, we have seen morc and more rule extraction 
algorithms in the literature. There exists the need to organize rule 
extractioii algorithms into perspectives using S O ~ C  classification 
schemes. Andrews et al. [l] are among the first to propose a scheme, 
which utilizes fivc factors to classify rule extraction algorithms 
including the expressive power of extracted rulc, translucency of 
extraction technique, utilization of spccialized training regimes, 
quality of extracted rules, and algorithmic complexity. However, the 
suggested scheme has overlapping and missing areas. For example, 
theexpressive power of rules canheconsideredasa pertialindicator 
of quality of rules, and there is no coverage on algorithms which 
require specialized networkstructure and domain knowledge. After 
examining different rule extraction algorithms, we propose the 
classification framework "Input-Network-Training-Output-Extrac- 
tion-Knowledge." The remaining of this section will explain the 
framework and identify some major practices in existing rule 
extraction algorithms. 

Fig. 1 summarizes the characteristics of some existing rule 
extraction algorithms in terms of the proposed classification 
framework. Network input, the first component of the framework, 
concerns about the input requirement to the network. Input 
attributes can be boolean, nominal, or continuous; and there can be 
the input requirement of domain knowledge. Network structure 
considers whether an algorithm requires specialized network 
architecture to facilitate the rule extraction process. Training 
algorithm considers whethcr a rule extraction algorithm requires 
specialized training methods. Nctwork output considers whether 
the output from the trained network has to be preprocesscd before 
submitting as input to the rule extraction process. Extraction 
proccss considers the methodology as well as the computativnal 
complcxity of an algorithm. There are two main types of extraction 
methodologies: Generate and test, which is search based; and 
analytic, which is nonsearch based. The analytic approach extracts 
rules by directly interpreting the strengths of conncction weights in 
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Fig. 1 .  The framework lor classifying rule extraction algorithms. 

a trained network. Search-based techniques usually imply high 
computation complexity of tlie rule cxtraction algorithms. The 
degree of complexity generally increases exponentially as a factor of 
the numbers of input and hidden nodes. The complexity problcm 
can bc alleviated by adopting heuristics [6] to constrain the search 
space. Extracted knowledge, tlie last component in tlie classification 
franework, considcrs thc representation, quantity, and accuracy ot 
extracted knowledgc. Thc representation of extractcd knowledge 
can be classified as: Svmbolic rules vs. numeric function. coniunctive 

network structure and training methods for extraction algorithms. 
There are twc major reasons for adopting specialized schemes, 
either to customize the network to a specific problem domain [9], or 
to facilitatc the cxtraction process [Z], 1161, [20]. For example, by 
modifying the activation function into a threshold function, NofM 
[20] can focus on interpreting the magnitude of crmnection weights, 
and ignore the strengths of nodes' output. While this tactic can 
simplify the extraction process, it deteriorates the learning power of 
a network bv disabline uartiallv activatcd hidden nodes. We urefer . ,  

vs. disjunctive in rules, and including hidden nodes vs. direct 
mapping betwecn input attributes and classes in extracted knuwl- 
edge. In terms of comprehensibility, a direct mapping bctwecn 
input attributes and classes is easier to trace and apply than rules 
including hidden nodes. The quantity as a considcration factor for 
knowledge refers to the number of extracted rules or functions. 
Generally, without compromising the prediction accuracy, fewer 
rules and functions imply easier interpretation and application. Thc 
accuracy of knowledge, the last consideration factor for extracted 
knowledge, indicates tlie prediction accuracy of rules or functions as 
applied to new cases. 

The examination of existing rule extraction algorithms using the 
"Input-Nehvork-Training-Output-Extraction-Kn~wlcdge" frame- 
work reveals three major practices of rule extraction. The first 
practice is the computational complexity causcd by the generate and 
test extraction technique. The general tactic in generate and test 
technique involves establishing relationships between input and 
hidden nodes, then relationships betwecnhidden and outputnodes, 
and finally relationships between input and output nodes by 
merging the first two sets of relationships. The generate and test 
approach is computationally expensive, which renders it unsuitable 
for rcal-time applications. We advucatc the analytic approach, 
extracting knowledge by directly intcrpreting the strcngths of 
connection weights, as a better approach than generate and test for 
rule extraction. The second practice concerns about the specialized 

" ,  
the utilization ol standard nehvork structurc and training methods 
in rule cxtraction, so as to enhance the generalization power of the 
algorithms. The last practice involvcs the existence of hidden nodes 
in the final rulc set. We prcfer the approach of direct mapping 
between input and output nodes, so as to enhancc the compreheu- 
sibility and applicability of rules. Before we turn to the rule 
extraction algorithm proposed in this papcr, accuracy as a factor for 
evaluating extractcd rulcs deserves a few words. Fidclity, which is 
defined as the exachiess between the rules' and the network's 
classification behavior, has been suggested as a criterion of rule 
quality [2], [3]. Fidelity is a desirable trait for rule cxtraction 
algorithms to possess if tlie trained network predicts accurately. On 
the other hand, for an inaccurate network, we challenge the rule 
extraction algorithm to cumprcss the knowledge by eliminating 
inaccurate, irrelevant, or nonessential information, To evaluate the 
quality of rules, we suggest that rulcs should prcdict as accurately as 
or more accurately than the network per sc. 

3 SPECIFICATIONS OF GLARE 
This scction describes the proposed rule cxtraction algorithm 
GLARE. Fig. 2 summarizes the specifications of GLARE based 
on tlie "Input-Network-Training-Output-Extraction-Knowled~e" 
framework. GLARE is designed for netwnrks with only onc hidden 
layer. The next section provides an illustrative examplc for the 
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Inppl: 

N o  domainknowledge required. 
Nstworksharcinra: 

Standardfeedfawardneural mtwcak. 
One hidden layer. 
Norestrictiononnmber ofhddennodes. 

Tm'nikg AlgotitBm: 
Standardbackpropagation algorithm 

NsCork OartpBlt rn Inppl io Ekimction: 

M O  Ekhciim h c m :  
For eachwtptnode m (each class inthe data set), dothe follovnng 
1 .  C r e a t e R ~ ~ H ~ ~ h i ~ h a r ~ ~ ~ n ~  ofallirqutnodesXi(categotyj ofinput 

attzibute i, G isthe total i q u t  attnbIAe$ zj is be total categoty values for all 
inputattrihtes) tnhddennode n @= 1 ,  2, ... N), basedmthema&ude of 
cmmectionweigkbs from irqutnodestohiddennodenindescendingordes. 

2 .  CreateRRU?H,whicharereducedRWIH,from step 1, basedontheparameter 
NWLH =a .  

3 .  Calculate Il(H,J which are imporlance indexesfca hiddennoden to output 
node m. 

4 Create RWHO, whichis theranking of importance of hiddennodes to output 
node tn in descending order, based on II(w from step 3 

S ,  Create ATTRwhichisanNxam~tr t ru :  consi~ngofRRWIKnfromstep2, and 
adjustedbasedmRWH0, from step4. Irqutnodesonth toprowsandleR 
columns in the ATTR are  more influentid fcu determining the output of the 
output node m 

6 .  C r e a t e R A T T R w h i c h i s a n ~ i x ~ j m a t n x  cotxistingdelements-1, 1 mO 
based on ATTR from step 5 .  

7 .  Create theclassifcationrule fornodem, basedonRATTRfrm step6 
(hr$zLtwllec 

Fottnat If attnbrdeO = category0 01 lAND 

C o n b ~ ~ o u s  attributes have to be centered and cmvertedinto nominal, 
then boolean attributes. 

N o  sflecialtreatmenttothe s e t  ofconnect ico lwei~~t .~f ro in  the trainednetwcuk. 

attribute 1 = categoty2 or 3AND .. 
Then class= 0 .  

Svmbolic. one composite rule for  each class, and eachtule as a coriunctive of 
disjunctives 
The length of the  conjunctive isthe nlmber ofinput atkbuteq and dijmctive i 
contains no more thanthe total categoriesin attrikutei 

Fig. 2. Specifications of GeneraLired Analytic Rule Extraction (GLARE) 

algorithm. Fig. 3 provides an example for a fully connected and 
feedforward neural network trained by backpropagation. For 
clarity purposes, only part of thc connection weights are shown. 
X, represents category value j of input attribute i. X,j equals to 1 (0) 
if attribute i has (does not have) category value .j. Xi is the total 
number of input attributcs, and Cj is the total number of category 
values for all attributcs. Note that different attributes may have 
diffcrcnt numbers of category values. H,, is hidden node ~i where 
I I  = 0,1, ..., N, and N is the total number of hidden nodes. C,,, is 
output node m rcpresenting class m in the data set. Far each 
output class m, GLARE performs thc following seven steps for 
extracting the composite rule: 

Step (2): Create l<WIfI,, 

For cach hidden node n in thc network, create miking RWIIf,,. 
RWIH,, is the ranking of all input nodes based on thc descending 

order of absolute values of connection weights between input 
nodes to hidden nadc 11. A positive or negative sign is added to 
each input node in RWIH,, to indicate whethcr thc cvnnection 
weight between thc input node and hidden node is pvsitive or 
negative. The output of stcp (1) is a set of rankings consisting of N 
different RWIH,,. 

Step (2): Create RRWIII,,. 

This step creates RRWIH,,, scduced RWIII,,, by reducing the length 
of RWIH,, from step (1) as deterrnincd by the parameter NWIH. 
NWIH means the number of adopted weights between input and 
hiddcn layer. Set the parameter NWIH to 0, where 15 U 5 X,. 
Some heuristics for choosing NWIH will be discussed in Section 6. 
Then, the first a input nodes in ILWIH,, will bc retained for further 
processing, and remaining input nodes in ItWIH,, will bc deleted. 
The output of this step is a set of N different IWWIII,, rankings. 
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Fig. 3. A trained feedforward neural network 

The purpose of this step is to select several largest connection 
wcights for rule extraction. 

Step  (3): Culcirlute impovtance indexes for  hidden nodes. 

Resubmit all training cases of class m to the trained network. 
Notice that the network must he trained before the rcsubmission. 
For cach hidden node II,,, record the activation levcl of each 
resubmittcd training case, calculatc the average activation level, 
tlien calculate the importance index using the following equation: 

II(H,,,,,) = ABS(AAL,,,,, * WHO,,,,,) (1 )  

where: 

ABS(.) indicatcs absolute value, 

II(II,,,,,) is the importance index of hidden node n to output 
node m, 

AAI,,,,,, is the average activation level of hidden node n for 
training cases of class in, and 
WHO,,,,, is the connection weight from hidden node n to 
output node m. 

The purpose of this step is to take into consideration the partial 
activation levcl of a hidden node, and thus preserve the learning 
power of partially activated hidden nodes. The output of step (3) is 
numeric values II(H,,,,,) for all hidden nodes indicating the 
influential power of each hidden node in determining the output 
for output nude m. 

added to each hidden node in RWHO,,, to indicate whether the 
connection weight between thc hidden node and output node is 
positive or negative. The output of step (4) is a ranking of hidden 
nodes based on their importance on determining the output for 
output node m. 

Step (5): Creute A P R .  

RWHO,,, (one ranking) from step (4) and I<.H.WIII,, (N rankings) 
from step (2) are used to conshuct an 1V x a matrix ATTIC. ATTR 
consists of RRWIH,, rcordered and adjusted based on RWHO,,,. 
First, we reorder RRWIH,, from step (2) according to the order of 
hidden nodcs in RWIIO,,,. Second, for hidden nodes with negative 
signs in RWIIO,,, wc flip the sign of all input nodes in the 
corresponding H.IIWIH,. The rationale of flipping the signs of Xs is 
explained as follows. For a hidden node which has a negative 
connection weight to an output node, the output of that hidden 
node must be low for the output node to generate a high output. 
Then, in order to have a low output from that hidden node, those 
input nodes which have negative connection weights to the hidden 
node must have the input value 1 and thasc input nodes which 
have positive connection weights to the hiddcn node must have 
the input value 0. This reasoning demands that the signs of all 
input nodes be reversed for hidden nodcs with negative connec- 
tion weights to the output node. The output of step (5) is a matrix 
ATTR in which the important input nodes for class m occupy the 
tOD rows and left columns. An +XS<f-X!<) in ATTR indicates that in . , ~  

Step (4): Create lWH0,,3. 

Create the ranking RWHO,,,. H,V'I~IO,,, is thc ranking of all hidden 
nodes for output node C,, based on the descending order of the 
importance indexes from step (3). A positive or negative sign is 

order for output node C,,, to have a high output (so that a certain 
case will be classified as class m), input node X, must have the 
input value 1 (0). 
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Step (6): Create RATI'R 

Create an Xi x Cj matrix RATTR based on the ATTR from step (5). 
Following the directions of top to down and left to right, we use 
elemcnts in ATTR to determine element values in RATTR. RATTR 
is initialized to 0. Then, an +Xii (-Xij) in ATTR will set category j of 
attribute i in RATTR to I(- I). Once an element in RATTR is set, it 
will not be reset. In other words, less important elements in ATTR 
have only residual power to determine element values in RATTR. 
The oupu t  of step (6) is a matrix RATTR that can bc used to 
construct the classification rule for class m. 

Step (7): Create tke classification rule for class m.  
Based on clcment values in RATTR, we construct a composite rule 
for class m. An element of 1 (-I) in RATTR indicates that attribute 
i must havc (must not havc) category value j fur class m. An 
element of 0 indicates that it docs not matter whether attribute i 
has category value j. The current implementation of CLARE treats 
0 as 1. The format of the extracted rule is: 

If 

Then class = 0. 

Each rule is a conjunctive of disjunctives. The length of the 
conjunctive is thc number of input attributes, and disjunctive i 
contains no more then the total categories in attribute i. 

The application order of rules to a new case can be very 
important for the correct classification of thc case. The current 
implementation is to apply the most rcstrictive rule first, i.e., the 
rule with thc most -Is in the RATTR matrix. For new cases to 
which no rule can be applied, the majority class in the training set 
is used as the default class. To avoid noise, it may not be necessary 
for a ncw case to match all attribute values in a rule in order to be 
labeled as the class indicated by the rule. The GLARE algorithm 
has a parameter NMATTR that specifies thc minimum number of 
attributes r? case must match in order to be classificd ns the class for 
the rule. In Scction 6, we will discuss some heuristics for 
determining NMATTR. 

attribute 0 = catcgory 0 or 1 AND 
attribute 1 = category 2 or 3 AND ... 

4 AN ILLUSTRATIVE EXAMPLE 
The network in Fig. 3 has nine input nodcs (i  = 0,1,2,  and .i = 
ill 1: 2 for each i), four hidden nodes (ii = 0,1,2,3) ,  and three 
output nodes (111 = 0, I ,  2).  To extract the composite rule for class 1, 
GLARE carries out the following steps: 

step (1): Create rrwrfI,2 

Notc that the conncction weights for HI, Hg, and €I:, are not shown 
in Fig. I ,  and are assumed to gencratc RWIH,, as follows: 

IlWIHn : +Xzz + Xi1 - Xiii + Xio i Xi? 
+X,n - Xoo -k Xai + Xm 

RWlTl, : +X"" + xn, + xn2 -I Xi,, -xu 
-xiz - X2() - & I  - XT2 

-X,u + XI0 - xi2 + XZI 
ItM'II12 : +X,,(> - Xu2 +XI, - X2" -+ X22 

RM'iFl:, : -XX - Xzl - Xzn - X u  +Xu 
+Xio -Xo2 -Xni -Xoii. 

Step (2): Create RRM~III,,. 

Suppvsc we set NWIII to 2. The following arc the RRWFI,, fur 
output node 0: 

II.lI,\V11l,, : +x12 + x,, 
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llILWIII1 : +X,l,, + Xo1 

RltWIHz : -+XOO - Xog 

RHWIH:, : -X22 -XU.  
Step (.3): Calculate importance indexes for hidden nodes. 

iI(Ho,l), II(Hol), Jl(Ilo~), and lI(lIo3) are calculatcd using (1). 
Suppose the calculated values are II(Ho,,) = 10.5,lI(Hol) = 19.8, 
II(HI,?) = !I.& and II(Ilo:,) = 4.5. 

Step (4): Create RCVIIO,, 

Based on the importancc indexes from step (3), the following 
R\VHOe is constructed: 

RWHOo : +Ill - I& + H2 - 11s. 

Note that we attach the positive sign to 11, and H?, and the 
negative sign to Hu and 112, based on the signs of conncction 
weights from those hidden nodes to CO. The above RWHOo 
indicatcs that HI is most important far determining the output 
value of CO, followed by 1111, thcn 112; and I& is the least important. 

Step (5): Create ATTR. 

Using RWllOi, from step (4) and RRWIH~, RRWIl~ll, RRWl112, 
RRWIH:, from step (2), ATTR is genemted as: 

column 
0 1 

(1 +X,m + & I  
cow 1 - X T 2  - XI1 

2 +Xilli -Xu2 
3 + X 2 * t X 2 , .  

Notice that in the above ATTR, we put RRWIHI in row 0, 
RRWIH" in row 1, RR.T(WIH2 in row 2, and ltRWTFls in row 3, as 
demanded by the order of hidden uodes in IIWIIOo. We also flip 
the signs of the input nodes in RIlWIII~ and RlIWIBa because 110 
and Ha have negativa signs in  RWtIOo. 

Step (6): Create R A P R .  

Using ATTR from step (5). tlw following RATTR is constructed: 

Categories(j) 
~~ 0 1 2  

0 1  1 - I  
Attributes(i) 1 il - 1 0 

2 il 1 - I  

The procedure of filling thc above RATTR is as follows. We start 
with element 0 in row 0 from ATTR. Since that clement is +X,,n, we 
sct category 0 of attribute 0 in RATTR to 1. Then, we use elcmcnt 1 
in row 0 from ATTR, and since that elcmcnt is +Xi!,, we set 
category 1 of attribute 0 to 1. Thc filling procedure will go on until 
we exhaust all clcments in ATTR. Notice that since elcmcnt 0 in 
row 1 from ATTR has sct category 2 of attribute 2 to -1, element 0 
in row 3 cannot reset that to 1, according to the residual power 
principle for clcments in ATTR. 

Step (7): Create the classification rule for class m. 

Using the RATTR from stcp (6 ) ,  the following rule for class 0 is 
constructed: 

If attribute 0 = 0 or  1 and 
attribute 1 = 1 or 2 and 
attribute 2 = 0 or 1 

Then class = 0. 
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BUPA - c 82.00 58.33 82.00 58.33 98.00 75.00 .. .. 

Glass - c 96.00 75.00 96.00 66.67 98.00 79.11 _. .. 

1 Iris ~ c 97.06 $7.92 97.06 97.92 100.00 95.83 -. .. 

BUPA - p  70.00 75.00 60.00 41.67 50,00 50.00 52.00 58.33 
Cilass - p 80.00 87.50 90.00 83.33 92.00 75.00 18.00 83.33 
Iris - p  61.77 60.42 94.12 93.75 g.06 93.75 93.14 93.75 

BUPA - q WO0 62.50 72.00 58.33 N O 0  58.33 54.00 66.61 
Glass - q 78.00 62.50 86.00 58.33 100.00 10.83 94 00 79 17 
Iris - q 60.78 62.50 62.75 58.33 98.04 97.92 88.24 93.75 

TABLE I 
Correct Classification Rates (in Percentages) for Training Sets and Test Sets 

1 - ~~ ~~ ~~ ~~~ ~ 

' n means dala se& wilh nominai atlrlbutes. 
c means data Sets wilh continuous atf,ibutes. 
p means conveltiog continuous anributes into nominal allribotes using p scaling. 
4 means convenlog continuous attributes ink nominai attributes using q scaiing. 

5 EXPERIMENTAL METHODOLOGY 
The experiment adopted six data sets from the machine learning 
databases [lo] at the University of California at Irvine (UCI). The 
Postoperative Patient (Post), Balloon (only the last data set in the 
repository), and Hepatitis data sets have only nominal attributes. 
The RUPA, Glass, and Iris data sets havc only continuous 
attributes. To avoid missing values, we deleted attributes with 
missing valucs. For Hepatitis, only attributes 4, 5, 6 7 ,  8, 11, 12, 13, 
14, 15, and 20 were used. For Glass, only attributes 2, 3, 4, 5, 6, 7, 
and 8 were uscd. To avoid uneven class distribution, we used only 
classtls 'I and 2 in the Glass data sct. Then, we randomly selectcd 74 
cases from Hepatitis as well as from Glass for the experiment. The 
ratio of training to test cases is 7 : 3 in each data set. To apply 
GLARE, continuous attributes in the RUPA, Glass, and lris data 
sets havc to be centered and converted into nominal attributes. We 
developed two scaling methods, p scaling and q scaling, for the 
conversion The method of p scaling is to assign attribute values 
into five intervals of equal length along the line between the 
minimum and maximum values for each attribute. The method of 
q scaling is to assign the first greatest 20 percent attribute valucs 
into category 0, thc next greatest 20 percent into category 1, and so 
on. After the conversion, there are 12 different data sets including 
Post-11, Balloon-n, Hepatitis-n, BUPA-c, Glass-c, Iris-c, BUI'A-p, 
Glass-p, Iris-p, BUPA-q, Glass-q, and Iris-q whcre 11 indicates 
nominal attributes, o indicates continuous attributes, p indicatcs 
nominal attributes from p scaling, and q indicates nominal 
attributes from q scaling. The following experimental procedure 
was applied to each of the n, 11, and g data sets: 

I. Use tlie C4.5 program [I31 to build ' IO decision trees from 
the training set. Decision trees are used to predict the test 
set. Record the best test set CCR (corrcct classification rate 
as thc percentage of corrcctly classified cases). 

2. Apply the rule extraction procedure from C4.5 to decision 
trees from step (1). C4.5 choascs the best trce from step (1) 
based on predicted error rates. Classification rules are 
generated from the chosen tree. Rules are applied to tlie 
training and test set, Rccord the tcst set CCR. 
Convert nominal attributes into binary input attributes for 
backpropagation training. Apply backpropagation [I21 to 
the training sct, and predict test set. Repeat the training 10 
times with a new random set of initial wcights for each 
trial. Record the best test set CCR. 
Apply GLARE to haincd networks from step (3). Extracted 
rules are used to predict the training and test set. Record 
the best test set CCR. 

3 .  

4. 

The above experimental procedure was also applied to data sets 
with continuous attributes except that step (4) was not carried out 
since GLARE cannot be applied to continuous attributes. On the 
other hand, step (2) was performed on data sets with continuous 
attributes since C4.5 can perform threshold testing for continuous 
attributes, which will test cadi midpoint betwecn two adjacent 
continuous attribute valucs to seicct the best threshold for 
grouping continuous attributes into nominal attributes. The 
numbcr of hiddcn nodes is set at about 50 percent to 75 percent 
of the number of input nudes. All backpropagation training were 
executed in C, and have 1,000 cpuchs, 0.5 learning rate, and 0 
momentum rate. 

6 EXPERIMENTAL RESULTS AND DISCUSSION 
Table 1 records all training and test set CCRs for experimental 
steps (1) to (4) described in Section 5. The discussion focuses on 
test set CCRs. The test sct results on nominal data sets (Post, 
Ballou, Hepatits) show that GLARE achieves the same or higher 
CCRs than the othcr methods. In Post data set, GLARE achicves a 
CCR of 71.43 percent, which is the same as Tree and Tree-Rule, and 
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TABLE 2 
Best Performance on Continuous Data Sets 

Data Set 
1 BUPA 

Tree Tree-Rule Neural Network GLARE 
75 00 ~ D 58.33 - C.CI 75.00 - c  66.67-4 i 

Glass 8750.; 8 3 8 8 - p .  7 9 1 7 - c  8 3 3 3 - p  1 
97 92 - c 97 92 - c 9792.4  93 75 -p,q 

is higher than Neural Network per se. In Ballon and Hepatitis data 
sets, GLARE achieves 100 percent and 85.71 percent respectively, 
which are higher than all other methods. Table 2 presents the best 
performance on continuous data sets (BUPA, Glass, and Iris). In 
BUPA, the best performcr (75 percent) is Tree (p) and Neural 
Network (c). GLARE (q) achieves the mcdium result 66.67 percent. 
Tree-Rule has the lowest result 58.33 percent. In Glass, the best 
performer is Tree (p). GLARE (p) and Tree-Rule (p) achicve the 
same medium result of 83.88 percent. Neural network (c) has the 
lowest of 79.17 percent. In Iris, Tree (c), Tree-Rule (c), and Neural 
network (q) achieve the same result of 97.92 percent, and GLARE is 
4.17 percent lower than the majority. Among the three continuous 
data sets, GLARE cannot achieve the best results, and tree is 
always among the best performers. This phenomenon may be due 
to the loss of information from converting continuous attributes 
into nominal attributes for GLARE. Overall, the experimental 
results show that GLARE outperforms other methods in nominal 
data sets, but not in continuous data sets. As for the parameters 
NMATTR and NWIH in GLARE, our experience suggests their 
values be set at 50 perccnt to 80 percent of the maxima for the 
two values. 
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